論文の概要: Noise Injection: Improving Out-of-Distribution Generalization for Limited Size Datasets
- arxiv url: http://arxiv.org/abs/2511.03855v1
- Date: Wed, 05 Nov 2025 20:53:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.215117
- Title: Noise Injection: Improving Out-of-Distribution Generalization for Limited Size Datasets
- Title(参考訳): ノイズインジェクション:有限サイズデータセットのアウト・オブ・ディストリビューション一般化の改善
- Authors: Duong Mai, Lawrence Hall,
- Abstract要約: 画像認識のためのディープラーニング(DL)モデルは、異なるデバイスや集団などのデータに一般化できないことが示されている。
本研究では, 基礎的ノイズ注入法(ガウス, スペックル, ポアソン, 塩, ペッパー)の訓練における活用について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learned (DL) models for image recognition have been shown to fail to generalize to data from different devices, populations, etc. COVID-19 detection from Chest X-rays (CXRs), in particular, has been shown to fail to generalize to out-of-distribution (OOD) data from new clinical sources not covered in the training set. This occurs because models learn to exploit shortcuts - source-specific artifacts that do not translate to new distributions - rather than reasonable biomarkers to maximize performance on in-distribution (ID) data. Rendering the models more robust to distribution shifts, our study investigates the use of fundamental noise injection techniques (Gaussian, Speckle, Poisson, and Salt and Pepper) during training. Our empirical results demonstrate that this technique can significantly reduce the performance gap between ID and OOD evaluation from 0.10-0.20 to 0.01-0.06, based on results averaged over ten random seeds across key metrics such as AUC, F1, accuracy, recall and specificity. Our source code is publicly available at https://github.com/Duongmai127/Noisy-ood
- Abstract(参考訳): 画像認識のためのディープラーニング(DL)モデルは、異なるデバイスや人口などのデータに一般化できないことが示されている。
特に、Chest X線(CXRs)からのCOVID-19検出は、トレーニングセットに含まれていない新しい臨床ソースからのアウト・オブ・ディストリビューション(OOD)データへの一般化に失敗することが示されている。
これは、モデルが、分布内(ID)データのパフォーマンスを最大化するための合理的なバイオマーカーではなく、ショートカット(新しいディストリビューションに変換しないソース固有のアーティファクト)を活用することを学ぶためである。
本研究は, 基本ノイズ注入法(Gaussian, Speckle, Poisson, Salt and Pepper)の訓練における使用法について検討した。
実験結果から,AUC,F1,精度,リコール,特異性などの重要な指標で10個のランダム種子の平均値に基づいて,IDとOOD評価のパフォーマンスギャップを0.10-0.20から0.01-0.06に大幅に低減できることが示された。
私たちのソースコードはhttps://github.com/Duongmai127/Noisy-oodで公開されています。
関連論文リスト
- A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n [2.4896276458398785]
本研究では,ポリプ検出のための新しい,軽量で効率的なフレームワークを提案する。
ノイズの多いデータをフィルタリングするLocal Outlier Factorアルゴリズムと、YOLO-v11nディープラーニングモデルを組み合わせる。
従来のYOLO法と比較して精度と効率が向上した。
論文 参考訳(メタデータ) (2025-07-14T23:36:54Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - A knee cannot have lung disease: out-of-distribution detection with
in-distribution voting using the medical example of chest X-ray
classification [58.720142291102135]
この研究では、胸部X線分類モデルであるCheXnetを用いて、胸部X線14データセットをトレーニングした。
複数ラベル分類のためのOODデータを検出するために,IDV(In-distriion voting)を提案する。
ID (chest X-ray 14) と OOD データ (IRMA と ImageNet) に基づいてトレーニングした IDV アプローチは,平均で3つのデータセットにわたる 0.999 OOD 検出 AUC を達成した。
論文 参考訳(メタデータ) (2022-08-01T18:20:36Z) - Partial and Asymmetric Contrastive Learning for Out-of-Distribution
Detection in Long-Tailed Recognition [80.07843757970923]
既存のOOD検出手法は,トレーニングセットが長距離分布している場合,大幅な性能劣化に悩まされていることを示す。
本稿では,部分的および非対称的な教師付きコントラスト学習(PASCL)を提案する。
我々の手法は従来の最先端の手法を1.29%$, $1.45%$, $0.69%$異常検出偽陽性率(FPR)と$3.24%$, 4,.06%$, 7,89%$in-distributionで上回ります。
論文 参考訳(メタデータ) (2022-07-04T01:53:07Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。