論文の概要: Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants
- arxiv url: http://arxiv.org/abs/2511.03971v1
- Date: Thu, 06 Nov 2025 01:49:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.265048
- Title: Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants
- Title(参考訳): 水処理プラントにおける有蓋マン・ザ・ミドルサイバー攻撃の設計と検出
- Authors: Victor Mattos, João Henrique Schmidt, Amit Bhaya, Alan Oliveira de Sá, Daniel Sadoc Menasché, Gaurav Srivastava,
- Abstract要約: 本論文では,ミドル・イン・ザ・ミドル(MitM)攻撃のモデル化と評価のための体系的アプローチを提案する。
我々は,攻撃者が隠蔽制御装置を配備する能力に焦点をあて,PASAD(Process-Aware Stealthy Detection)異常検出法に基づいて対策を評価する。
- 参考スコア(独自算出の注目度): 0.5949176446317612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyberattacks targeting critical infrastructures, such as water treatment facilities, represent significant threats to public health, safety, and the environment. This paper introduces a systematic approach for modeling and assessing covert man-in-the-middle (MitM) attacks that leverage system identification techniques to inform the attack design. We focus on the attacker's ability to deploy a covert controller, and we evaluate countermeasures based on the Process-Aware Stealthy Attack Detection (PASAD) anomaly detection method. Using a second-order linear time-invariant with time delay model, representative of water treatment dynamics, we design and simulate stealthy attacks. Our results highlight how factors such as system noise and inaccuracies in the attacker's plant model influence the attack's stealthiness, underscoring the need for more robust detection strategies in industrial control environments.
- Abstract(参考訳): 水処理施設などの重要なインフラをターゲットにしたサイバー攻撃は、公衆衛生、安全、環境に対する重大な脅威である。
本稿では,システム識別技術を活用して攻撃設計を通知する秘密マン・イン・ザ・ミドル攻撃(MitM)をモデル化し,評価するための体系的アプローチを提案する。
我々は,攻撃者が隠蔽制御装置を配備する能力に焦点をあて,PASAD(Process-Aware Stealthy Detection)異常検出法に基づいて対策を評価する。
水処理力学を代表とした2階線形時間不変モデルを用いて,ステルス攻撃の設計とシミュレーションを行う。
以上の結果から,攻撃者のプラントモデルにおけるシステムノイズや不正確性などの要因が攻撃のステルスネスにどのように影響するかを明らかにするとともに,産業制御環境におけるより堅牢な検出戦略の必要性を浮き彫りにした。
関連論文リスト
- Preliminary Investigation into Uncertainty-Aware Attack Stage Classification [81.28215542218724]
この研究は、不確実性の下での攻撃段階推論の問題に対処する。
Evidential Deep Learning (EDL) に基づく分類手法を提案し、ディリクレ分布のパラメータを可能な段階に出力することで予測の不確実性をモデル化する。
シミュレーション環境における予備実験により,提案モデルが精度良く攻撃の段階を推定できることが実証された。
論文 参考訳(メタデータ) (2025-08-01T06:58:00Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
モデル抽出攻撃は、デプロイされた言語モデルに重大なセキュリティ脅威をもたらす。
この調査は、抽出攻撃と防御攻撃の包括的分類、機能抽出への攻撃の分類、データ抽出の訓練、およびプロンプトターゲット攻撃を提供する。
モデル保護,データプライバシ保護,迅速なターゲット戦略に編成された防御機構について検討し,その効果を異なる展開シナリオで評価する。
論文 参考訳(メタデータ) (2025-06-26T22:02:01Z) - Breaking the Flow and the Bank: Stealthy Cyberattacks on Water Network Hydraulics [3.360922672565235]
Stealthy False Data Injection Attacks (SFDIA)は、検出を回避しながらシステム操作を妥協する。
本稿では,水分散ネットワーク(WDN)に対するセンサ攻撃の系統的解析について述べる。
本稿では,身体的および検出的制約を満たす調整戦略から,簡易な計測操作まで,いくつかの攻撃形式を提案する。
論文 参考訳(メタデータ) (2025-04-24T02:54:20Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
本稿では,デジタル攻撃に対する最先端の対面防止手法の脆弱性に光を当てる。
反偽造システムに遭遇する一般的な脅威を包括的に分類する。
論文 参考訳(メタデータ) (2024-06-06T02:05:35Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
IDSの第1の枠組みは, ジョイント中毒や回避攻撃に対して堅牢である。
IEEE-13バスフィードモデルにおける本手法のロバスト性を検証する。
論文 参考訳(メタデータ) (2024-05-05T16:24:30Z) - A Human-in-the-Middle Attack against Object Detection Systems [4.764637544913963]
本稿では,暗号におけるman-in-the-Middle攻撃に触発された新たなハードウェア攻撃を提案する。
この攻撃はUAP(Universal Adversarial Perturbations)を生成し、USBカメラと検出システムとの間の摂動を注入する。
これらの知見は、自律運転のような安全クリティカルなシステムにおけるディープラーニングモデルの適用に対する深刻な懸念を提起する。
論文 参考訳(メタデータ) (2022-08-15T13:21:41Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
マルコフ決定過程(MDPs)の制御チャネルにおける最適ステルス毒素攻撃の設計問題について検討する。
この研究は、MDPに適用された敵国・毒殺攻撃や強化学習(RL)手法に対する研究コミュニティの最近の関心に動機づけられている。
論文 参考訳(メタデータ) (2021-09-15T09:13:10Z) - Attack Rules: An Adversarial Approach to Generate Attacks for Industrial
Control Systems using Machine Learning [7.205662414865643]
ルールマイニングに基づくアタック生成手法を提案する。
提案手法は、これまでは見られなかった新たな攻撃ベクトルの大部分を構成する30万以上の攻撃パターンを生成することができた。
論文 参考訳(メタデータ) (2021-07-11T20:20:07Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。