論文の概要: Large Language Models for Cyber Security
- arxiv url: http://arxiv.org/abs/2511.04508v1
- Date: Thu, 06 Nov 2025 16:25:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.50103
- Title: Large Language Models for Cyber Security
- Title(参考訳): サイバーセキュリティのための大規模言語モデル
- Authors: Raunak Somani, Aswani Kumar Cherukuri,
- Abstract要約: 本稿では,大規模言語モデルのサイバーセキュリティツールやプロトコルへの統合について検討する。
本稿で論じている主な問題は、従来のルールベースおよび署名ベースのセキュリティシステムが、現代のAIによるサイバー脅威に対処するには不十分であることだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the integration off Large Language Models into cybersecurity tools and protocols. The main issue discussed in this paper is how traditional rule-based and signature based security systems are not enough to deal with modern AI powered cyber threats. Cybersecurity industry is changing as threats are becoming more dangerous and adaptive in nature by levering the features provided by AI tools. By integrating LLMs into these tools and protocols, make the systems scalable, context-aware and intelligent. Thus helping it to mitigate these evolving cyber threats. The paper studies the architecture and functioning of LLMs, its integration into Encrypted prompts to prevent prompt injection attacks. It also studies the integration of LLMs into cybersecurity tools using a four layered architecture. At last, the paper has tried to explain various ways of integration LLMs into traditional Intrusion Detection System and enhancing its original abilities in various dimensions. The key findings of this paper has been (i)Encrypted Prompt with LLM is an effective way to mitigate prompt injection attacks, (ii) LLM enhanced cyber security tools are more accurate, scalable and adaptable to new threats as compared to traditional models, (iii) The decoupled model approach for LLM integration into IDS is the best way as it is the most accurate way.
- Abstract(参考訳): 本稿では,大規模言語モデルのサイバーセキュリティツールやプロトコルへの統合について検討する。
本稿で論じている主な問題は、従来のルールベースおよび署名ベースのセキュリティシステムが、現代のAIによるサイバー脅威に対処するには不十分であることだ。
サイバーセキュリティ業界は、AIツールが提供する機能を向上することによって、脅威がより危険で適応的になってきているため、変化している。
LLMをこれらのツールやプロトコルに統合することにより、システムはスケーラブルで、コンテキストを認識し、インテリジェントになります。
したがって、この進化するサイバー脅威を緩和するのに役立ちます。
本稿では,LDMのアーキテクチャと機能,暗号化プロンプトへの統合,即時インジェクション攻撃の防止について検討する。
また、LLMを4層アーキテクチャを使ってサイバーセキュリティツールに統合することも研究している。
最後に,LLMを従来の侵入検知システムに統合し,様々な次元における本来の能力の向上を図る。
この論文の重要な発見は
(i)LDMを用いた暗号化プロンプトは、迅速なインジェクション攻撃を緩和する有効な方法である。
(ii)LLM強化サイバーセキュリティツールは、従来のモデルと比較して、より正確で、スケーラブルで、新しい脅威に適応できる。
3) LLM を IDS に統合するための分離モデルアプローチは,最も正確な方法であるため,最善の方法である。
関連論文リスト
- Large Language Models in Cybersecurity: Applications, Vulnerabilities, and Defense Techniques [11.217261201018815]
大規模言語モデル(LLM)は、脅威検出、脆弱性評価、インシデント応答に対するインテリジェントで適応的で自動化されたアプローチを可能にすることで、サイバーセキュリティを変革している。
高度な言語理解とコンテキスト推論によって、LLMは、IoTやブロックチェーン、ハードウェアセキュリティといったドメイン間の課題に対処する従来の手法を超越している。
論文 参考訳(メタデータ) (2025-07-18T03:41:18Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
マルチモーダル・ユニバーサル・ジェイルブレイク・アタック・フレームワークを提案する。
LLaVA,Yi-VL,MiniGPT4,MiniGPT-v2,InstructBLIPなどのMLLMの望ましくないコンテキスト生成を評価する。
本研究は,MLLMにおける堅牢な安全対策の必要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2025-06-02T04:33:56Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
マルチモーダルな大言語モデル (MLLM) は、視覚的な入力を含む会話への関与において顕著な成功を収めている。
視覚的モダリティの統合は、MLLMが悪意のある視覚的入力に影響を受けやすいという、ユニークな脆弱性を導入している。
本稿では,出力分布を校正することでMLLMの安全性を向上するCoCA技術を紹介する。
論文 参考訳(メタデータ) (2024-09-17T17:14:41Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
大規模言語モデル(LLM)は、高度な自然言語処理機能を提供することによって、様々なアプリケーションに革命をもたらした。
本稿では,LSMを利用したアプリケーションに適した脅威モデリングとリスク分析について検討する。
論文 参考訳(メタデータ) (2024-06-16T16:43:58Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [17.073186844004148]
大規模言語モデル(LLM)は、サイバーセキュリティを含むさまざまなアプリケーションドメインで人工知能を活用する新たな機会を開いた。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出など、幅広いサイバーセキュリティタスクに適用されている。
LLMベースの自律エージェントは、シングルタスク実行から複雑なマルチステップセキュリティのオーケストレーションへのパラダイムシフトを表している。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。