論文の概要: End-to-End Reinforcement Learning of Koopman Models for eNMPC of an Air Separation Unit
- arxiv url: http://arxiv.org/abs/2511.04522v1
- Date: Thu, 06 Nov 2025 16:35:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.505943
- Title: End-to-End Reinforcement Learning of Koopman Models for eNMPC of an Air Separation Unit
- Title(参考訳): 空気分離装置eNMPCのためのクープマンモデルのエンドツーエンド強化学習
- Authors: Daniel Mayfrank, Kayra Dernek, Laura Lang, Alexander Mitsos, Manuel Dahmen,
- Abstract要約: 本手法は, 単一生成物(窒素)空気分離ユニットの大規模モデルに基づく, より困難な需要応答ケーススタディとよく一致している。
システム識別をベースとしたクープマンeNMPCは、小さな省エネ効果を生み出すが、しばしば制約に違反するので、制約違反を回避しつつ、同様の経済性能を提供する。
- 参考スコア(独自算出の注目度): 37.458438388741214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With our recently proposed method based on reinforcement learning (Mayfrank et al. (2024), Comput. Chem. Eng. 190), Koopman surrogate models can be trained for optimal performance in specific (economic) nonlinear model predictive control ((e)NMPC) applications. So far, our method has exclusively been demonstrated on a small-scale case study. Herein, we show that our method scales well to a more challenging demand response case study built on a large-scale model of a single-product (nitrogen) air separation unit. Across all numerical experiments, we assume observability of only a few realistically measurable plant variables. Compared to a purely system identification-based Koopman eNMPC, which generates small economic savings but frequently violates constraints, our method delivers similar economic performance while avoiding constraint violations.
- Abstract(参考訳): 最近提案した強化学習(Mayfrank et al (2024), Comput。
Chem
Eng!
190) クープマン代理モデルは、特定の(経済的)非線形モデル予測制御((e)NMPC)アプリケーションで最適性能を訓練することができる。
これまでのところ,本手法は小規模なケーススタディでのみ実証されている。
そこで本研究では, 単一生成物(窒素)空気分離ユニットの大規模モデルに基づく要求応答ケーススタディにおいて, 提案手法のスケール性について述べる。
全ての数値実験において、数個の実測可能な植物変数の可観測性を仮定する。
システム識別をベースとしたクープマンeNMPCは、小さな省エネ効果を生み出すが、しばしば制約に違反するので、制約違反を回避しつつ、同様の経済性能を提供する。
関連論文リスト
- UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model [19.8785302359805]
本稿では,ベイズエントロピーの定式化に基づく理論的動機付けの不確実性定量化モデルを提案する。
この定式化を利用して、軽量なポストホックUQ手法USAMを訓練する。
提案した決定論的USAMは,SA-V,MOSE,ADE20k,DAVIS,COCOデータセットに優れた予測能力を示す。
論文 参考訳(メタデータ) (2025-05-08T08:36:23Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
線形最小化オラクル(LMO)を用いて問題の幾何学に適応する新しいアルゴリズム群を提案する。
我々は,Adamに頼らずに,我々のアルゴリズムであるScionを用いたナノGPTトレーニングの大幅な高速化を示す。
論文 参考訳(メタデータ) (2025-02-11T13:10:34Z) - Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model [20.054342930450055]
本稿では,大規模言語モデルの圧縮に適したプログレッシブ・ローランク分解法(PLRD)を提案する。
PLRDは計算オーバーヘッドとエネルギー消費を大幅に削減する。
この結果から,PLRD は LLM の効率的なスケーリングのための新しい標準となる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-28T15:27:57Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,リトレーニングを繰り返して安定なモデル列を見つけるためのモデルに依存しないフレームワークを提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
平均的に、予測力の2%の低下は、安定性の30%の改善につながることが判明した。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Data-Driven Model Reduction and Nonlinear Model Predictive Control of an
Air Separation Unit by Applied Koopman Theory [45.84205238554709]
空気分離ユニットの低次制御モデルを生成するためのデータ駆動型削減戦略を提案する。
縮小したクープマンモデルの固定ブロック構造に合わせた微分を用いたNMPC実装を提案する。
調整したNMPC実装による削減手法により、ASUのリアルタイムNMPCを平均CPU時間で98 %削減できる。
論文 参考訳(メタデータ) (2023-09-11T11:18:16Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
モデルベース強化学習アルゴリズムは、モデルフリーのアルゴリズムよりもサンプル効率が高い。
本稿では,精度の高い学習モデルに強く依存することなく,高いサンプル効率を実現する新しい手法を提案する。
CMBACは,いくつかの課題に対して,サンプル効率の点で最先端のアプローチを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-12-16T15:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。