論文の概要: Knowledge-based anomaly detection for identifying network-induced shape artifacts
- arxiv url: http://arxiv.org/abs/2511.04729v1
- Date: Thu, 06 Nov 2025 18:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.559575
- Title: Knowledge-based anomaly detection for identifying network-induced shape artifacts
- Title(参考訳): ネットワークによる形状アーティファクトの同定のための知識に基づく異常検出
- Authors: Rucha Deshpande, Tahsin Rahman, Miguel Lago, Adarsh Subbaswamy, Jana G. Delfino, Ghada Zamzmi, Elim Thompson, Aldo Badano, Seyed Kahaki,
- Abstract要約: 本研究は, 合成画像中のネットワーク誘起形状アーチファクトを検出するための, 知識に基づく新しい異常検出手法を提案する。
2つの合成マンモグラフィーデータセットにおいて,ネットワークによって誘導される形状のアーティファクトを同定する手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 3.29352273631268
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Synthetic data provides a promising approach to address data scarcity for training machine learning models; however, adoption without proper quality assessments may introduce artifacts, distortions, and unrealistic features that compromise model performance and clinical utility. This work introduces a novel knowledge-based anomaly detection method for detecting network-induced shape artifacts in synthetic images. The introduced method utilizes a two-stage framework comprising (i) a novel feature extractor that constructs a specialized feature space by analyzing the per-image distribution of angle gradients along anatomical boundaries, and (ii) an isolation forest-based anomaly detector. We demonstrate the effectiveness of the method for identifying network-induced shape artifacts in two synthetic mammography datasets from models trained on CSAW-M and VinDr-Mammo patient datasets respectively. Quantitative evaluation shows that the method successfully concentrates artifacts in the most anomalous partition (1st percentile), with AUC values of 0.97 (CSAW-syn) and 0.91 (VMLO-syn). In addition, a reader study involving three imaging scientists confirmed that images identified by the method as containing network-induced shape artifacts were also flagged by human readers with mean agreement rates of 66% (CSAW-syn) and 68% (VMLO-syn) for the most anomalous partition, approximately 1.5-2 times higher than the least anomalous partition. Kendall-Tau correlations between algorithmic and human rankings were 0.45 and 0.43 for the two datasets, indicating reasonable agreement despite the challenging nature of subtle artifact detection. This method is a step forward in the responsible use of synthetic data, as it allows developers to evaluate synthetic images for known anatomic constraints and pinpoint and address specific issues to improve the overall quality of a synthetic dataset.
- Abstract(参考訳): 合成データは、機械学習モデルのトレーニングにデータ不足に対処するための有望なアプローチを提供するが、適切な品質評価のない採用は、モデルの性能と臨床的有用性を損なうアーティファクト、歪み、非現実的な特徴を導入する可能性がある。
本研究は,合成画像中のネットワーク誘起形状アーチファクトを検出するための,知識に基づく新しい異常検出手法を提案する。
提案手法は,2段階構成のフレームワークを利用する。
一 解剖学的境界に沿った角度勾配の像ごとの分布を分析して特定特徴空間を構築する新規特徴抽出装置
(II)孤立林を基盤とした異常検知装置。
CSAW-MとVinDr-Mammoの患者データセットで訓練したモデルから,2つの合成マンモグラフィーデータセットにおけるネットワーク誘発形状アーティファクトの同定方法の有効性を実証した。
定量評価の結果,AUC値は0.97(CSAW-syn)と0.91(VMLO-syn)である。
さらに、3人の画像科学者による読者による研究では、ネットワークによって誘導される形状のアーティファクトを含む画像が、最も異常な分割に対する平均一致率66%(CSAW-syn)と68%(VMLO-syn)のヒト読者によってフラグ付けされていることを確認した。
アルゴリズムと人間のランキングのケンダル・タウ相関は2つのデータセットの0.45と0.43であり、微妙なアーティファクト検出の難しさにもかかわらず妥当な一致を示している。
この方法は、開発者が既知の解剖学的制約に対する合成画像を評価し、特定の問題に対処し、合成データセットの全体的な品質を改善するため、合成データの使用の責任を負うステップである。
関連論文リスト
- A Novel Multi-branch ConvNeXt Architecture for Identifying Subtle Pathological Features in CT Scans [1.2461503242570642]
本稿では,医療画像解析の難題に特化して設計されたマルチブランチConvNeXtアーキテクチャを提案する。
提案モデルでは,厳密なデータ前処理から拡張まで,厳格なエンドツーエンドパイプラインを組み込んでいる。
実験結果から、最終的なROC-AUCは0.9937、バリデーション精度は0.9757、F1スコアは0.9825である。
論文 参考訳(メタデータ) (2025-10-10T08:00:46Z) - Clinically-guided Data Synthesis for Laryngeal Lesion Detection [2.573786844054239]
そこで本研究では,Lyngeal endoscopic image-annotation pairを生成するために,Latent Diffusion Model(LDM)とControlNetアダプタを併用した新しいアプローチを提案する。
提案手法はCADx/eモデルのトレーニングデータセットの拡張に有効であり,喉頭科学における評価プロセスの強化に有効である。
論文 参考訳(メタデータ) (2025-08-08T09:55:54Z) - Physics-Guided Dual Implicit Neural Representations for Source Separation [70.38762322922211]
我々は,2つの暗黙的ニューラル表現フレームワークを用いて,ソース分離のための自己教師型機械学習手法を開発した。
本手法は,復元に基づく損失関数の最小化により,生データから直接学習する。
本手法は,様々な領域にまたがるソース分離問題に対処する汎用的なフレームワークを提供する。
論文 参考訳(メタデータ) (2025-07-07T17:56:31Z) - HistoART: Histopathology Artifact Detection and Reporting Tool [37.31105955164019]
ワイルスライドイメージング(WSI)は、組織標本の詳細な高分解能検査のために広く用いられている。
WSIは、スライドの準備とスキャンの間に導入されたアーティファクトに弱いままです。
本稿では,WSIに対する3つのロバストなアーティファクト検出手法を提案し,比較する。
論文 参考訳(メタデータ) (2025-06-23T17:22:19Z) - Missing Data Estimation for MR Spectroscopic Imaging via Mask-Free Deep Learning Methods [0.0]
MRSIメタボリックマップに欠落したデータを推定するための,最初のディープラーニングベースのマスフリーフレームワークを提案する。
我々のモデルは、リトレーニングやマスク入力を必要とせず、実世界のデータセットによく当てはまる。
論文 参考訳(メタデータ) (2025-05-11T01:56:26Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
DiffDoctorは2段階のパイプラインで、画像拡散モデルがより少ないアーティファクトを生成するのを支援する。
我々は100万以上の欠陥のある合成画像のデータセットを収集し、効率的なHuman-in-the-loopアノテーションプロセスを構築した。
次に、学習したアーティファクト検出器が第2段階に関与し、ピクセルレベルのフィードバックを提供することで拡散モデルを最適化する。
論文 参考訳(メタデータ) (2025-01-21T18:56:41Z) - Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。