論文の概要: Epistemic Reject Option Prediction
- arxiv url: http://arxiv.org/abs/2511.04855v1
- Date: Thu, 06 Nov 2025 22:39:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.610125
- Title: Epistemic Reject Option Prediction
- Title(参考訳): てんかん性拒絶反応予測
- Authors: Vojtech Franc, Jakub Paplham,
- Abstract要約: 高精度なアプリケーションでは、予測モデルは正確な予測を生成するだけでなく、その不確実性を定量化し、伝達する必要がある。
Reject-option 予測は、予測の不確実性が高い場合にモデルを停止させることによってこの問題に対処する。
これは、トレーニングデータが不十分な入力を識別し、信頼できる判断を下すことができる、最初の原則付きフレームワークである。
- 参考スコア(独自算出の注目度): 6.531546527140475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In high-stakes applications, predictive models must not only produce accurate predictions but also quantify and communicate their uncertainty. Reject-option prediction addresses this by allowing the model to abstain when prediction uncertainty is high. Traditional reject-option approaches focus solely on aleatoric uncertainty, an assumption valid only when large training data makes the epistemic uncertainty negligible. However, in many practical scenarios, limited data makes this assumption unrealistic. This paper introduces the epistemic reject-option predictor, which abstains in regions of high epistemic uncertainty caused by insufficient data. Building on Bayesian learning, we redefine the optimal predictor as the one that minimizes expected regret -- the performance gap between the learned model and the Bayes-optimal predictor with full knowledge of the data distribution. The model abstains when the regret for a given input exceeds a specified rejection cost. To our knowledge, this is the first principled framework that enables learning predictors capable of identifying inputs for which the training data is insufficient to make reliable decisions.
- Abstract(参考訳): 高精度なアプリケーションでは、予測モデルは正確な予測を生成するだけでなく、その不確実性を定量化し、伝達する必要がある。
Reject-option 予測は、予測の不確実性が高い場合にモデルを停止させることによってこの問題に対処する。
従来の拒絶選択アプローチは、大規模なトレーニングデータがてんかん不確実性を無視できる場合にのみ有効な仮定であるアレタリック不確実性にのみ焦点をあてる。
しかし、多くの現実的なシナリオでは、限られたデータがこの仮定を非現実的なものにしている。
本稿では,データ不足による高度のてんかん不確実性の領域で禁忌となるてんかん拒絶反応予測器について紹介する。
ベイズ学習に基づいて、学習モデルとベイズ最適予測器のパフォーマンスギャップを、データ分散を十分に理解した上で、期待される後悔を最小限に抑えるものとして、最適な予測器を再定義する。
与えられた入力に対する後悔が特定の拒絶コストを超えると、モデルは停止する。
私たちの知る限り、このフレームワークはトレーニングデータが不十分な入力を識別し、信頼性の高い意思決定を行うことができる、最初の原則付きフレームワークです。
関連論文リスト
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
予測モデルを明示的に使用せずに、距離重み付きクラス不純物という不確実性推定手法を提案する。
距離重み付きクラス不純物は予測モデルによらず効果的に機能することを確認した。
論文 参考訳(メタデータ) (2022-04-25T13:26:06Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Propagating State Uncertainty Through Trajectory Forecasting [34.53847097769489]
軌道予測は(雑音の多い)上流の知覚によって入力が生成されるため不確実性に囲まれている。
ほとんどの軌道予測法は上流の不確かさを考慮せず、最も類似した値のみを取る。
本稿では,新しい統計的距離に基づく損失関数である軌道予測において,知覚状態の不確実性を取り入れた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T08:51:16Z) - Loss Estimators Improve Model Generalization [36.520569284970456]
予測モデルと並行して損失推定器を訓練し,対照訓練目標を用いて予測の不確実性を直接推定する。
モデル一般化における損失推定器の影響を,その分布データに対する忠実度と,トレーニング中に見つからない分布サンプルや新しいクラスの検出能力の両方の観点から示す。
論文 参考訳(メタデータ) (2021-03-05T16:35:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。