論文の概要: The Imperfect Learner: Incorporating Developmental Trajectories in Memory-based Student Simulation
- arxiv url: http://arxiv.org/abs/2511.05903v1
- Date: Sat, 08 Nov 2025 08:05:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.646449
- Title: The Imperfect Learner: Incorporating Developmental Trajectories in Memory-based Student Simulation
- Title(参考訳): 不完全な学習者:記憶に基づく学生シミュレーションにおける発達軌道の導入
- Authors: Zhengyuan Liu, Stella Xin Yin, Bryan Chen Zhengyu Tan, Roy Ka-Wei Lee, Guimei Liu, Dion Hoe-Lian Goh, Wenya Wang, Nancy F. Chen,
- Abstract要約: 本稿では,メモリベースの学生シミュレーションのための新しいフレームワークを提案する。
構造的知識表現を備えた階層記憶機構を通じて発達軌道を組み込む。
実際に,次世代科学標準に基づくカリキュラム・アライン・シミュレータを実装した。
- 参考スコア(独自算出の注目度): 55.722188569369656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User simulation is important for developing and evaluating human-centered AI, yet current student simulation in educational applications has significant limitations. Existing approaches focus on single learning experiences and do not account for students' gradual knowledge construction and evolving skill sets. Moreover, large language models are optimized to produce direct and accurate responses, making it challenging to represent the incomplete understanding and developmental constraints that characterize real learners. In this paper, we introduce a novel framework for memory-based student simulation that incorporates developmental trajectories through a hierarchical memory mechanism with structured knowledge representation. The framework also integrates metacognitive processes and personality traits to enrich the individual learner profiling, through dynamical consolidation of both cognitive development and personal learning characteristics. In practice, we implement a curriculum-aligned simulator grounded on the Next Generation Science Standards. Experimental results show that our approach can effectively reflect the gradual nature of knowledge development and the characteristic difficulties students face, providing a more accurate representation of learning processes.
- Abstract(参考訳): ユーザシミュレーションは、人間中心のAIの開発と評価に重要であるが、教育アプリケーションにおける現在の学生シミュレーションには、重大な制限がある。
既存のアプローチはシングルラーニング体験に重点を置いており、学生の段階的な知識構築と進化するスキルセットを考慮に入れていない。
さらに、大規模言語モデルは直接的かつ正確な応答を生成するよう最適化されており、実際の学習者を特徴づける不完全な理解と発達の制約を表現することは困難である。
本稿では,構造化知識表現を伴う階層型記憶機構を通じて発達軌道を組み込んだ,メモリベースの学生シミュレーションのための新しいフレームワークを提案する。
このフレームワークはまた、認知発達と個人学習特性の両方の動的統合を通じて、メタ認知プロセスとパーソナリティ特性を統合して、個人学習者のプロファイリングを強化する。
実際に,次世代科学標準に基づくカリキュラム・アライン・シミュレータを実装した。
実験結果から,本手法は学生が直面する知識発達の段階的特性と特徴的困難を効果的に反映し,より正確な学習過程の表現を可能にすることが示唆された。
関連論文リスト
- Simulating Students with Large Language Models: A Review of Architecture, Mechanisms, and Role Modelling in Education with Generative AI [0.8703455323398351]
大規模言語モデル(LLM)を用いた教育環境における学生の行動のシミュレートに関する研究のレビュー
LLMをベースとしたエージェントが学習者の古型をエミュレートし、指導的な入力に反応し、マルチエージェントの教室シナリオ内で相互作用する能力に関する現在の証拠を示す。
本稿では,カリキュラム開発,教育評価,教員養成におけるシステムの役割について検討する。
論文 参考訳(メタデータ) (2025-11-08T17:23:13Z) - Evolution in Simulation: AI-Agent School with Dual Memory for High-Fidelity Educational Dynamics [10.185612854120627]
大規模言語モデル(LLM)ベースのエージェントは、複雑な人間のシステムや相互作用をシミュレートし理解するためにますます重要になっている。
エージェントを利用して複雑な教育力学をシミュレーションする自己進化機構を中心に構築されたAI-Agent School(AAS)システムを提案する。
論文 参考訳(メタデータ) (2025-10-13T11:27:53Z) - Cognitive Structure Generation: From Educational Priors to Policy Optimization [10.932994688742475]
本稿では,学生の認知構造を生成するための新しい枠組みである認知構造生成(CSG)を紹介する。
4つの人気のある実世界の教育データセットの実験結果から、CSGが生成する認知構造がより包括的で効果的な生徒モデリングの表現を提供することが示された。
論文 参考訳(メタデータ) (2025-08-18T06:21:36Z) - Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [45.82081693725339]
大規模言語モデル(LLM)は、数学、コーディング、推論といったタスクにまたがる印象的な機能を示している。
しかし、彼らの学習能力は、動的環境に適応し、新しい知識を得るのに不可欠であり、まだ過小評価されていない。
論文 参考訳(メタデータ) (2025-06-16T13:24:50Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
認知表現動的プログラミングに基づく知識追跡(CRDP-KT)モデルを提案する。
質問の難易度とそれらの間の性能間隔に基づいて認知表現を最適化する動的プログラミングアルゴリズムである。
これは、その後のモデルトレーニングのためにより正確で体系的な入力機能を提供し、それによって認知状態のシミュレーションにおける歪みを最小限にする。
論文 参考訳(メタデータ) (2025-06-03T14:44:48Z) - Cognitive AI framework: advances in the simulation of human thought [0.0]
Human Cognitive Simulation Frameworkは、人間の認知能力を人工知能システムに統合する大きな進歩を表している。
短期記憶(会話コンテキスト)、長期記憶(対話コンテキスト)、高度な認知処理、効率的な知識管理を融合することにより、コンテキストコヒーレンスと永続的なデータストレージを確保する。
このフレームワークは、継続的学習アルゴリズム、持続可能性、マルチモーダル適応性に関する将来の研究の基礎を築き、Cognitive AIを新興分野におけるトランスフォーメーションモデルとして位置づけている。
論文 参考訳(メタデータ) (2025-02-06T17:43:35Z) - In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
本研究では,人間ラベルデータに頼らずにエージェントが環境に整合できる新しい学習フレームワークを提案する。
このプロセス全体がメモリコンポーネント内で変換され、自然言語で実装される。
フレームワークの有効性を実証し、この問題に対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T08:25:11Z) - Leveraging generative artificial intelligence to simulate student
learning behavior [13.171768256928509]
本研究では,大規模言語モデル(LLM)による学生の学習行動のシミュレートの実現可能性について検討する。
従来の機械学習に基づく予測とは異なり、私たちはLLMを活用して、特定の人口層を持つ仮想学生をインスタンス化する。
我々の目的は、学習成果を予測するだけでなく、実際の学生の学習行動やパターンを再現することである。
論文 参考訳(メタデータ) (2023-10-30T00:09:59Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。