論文の概要: Klear-AgentForge: Forging Agentic Intelligence through Posttraining Scaling
- arxiv url: http://arxiv.org/abs/2511.05951v1
- Date: Sat, 08 Nov 2025 09:47:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.675023
- Title: Klear-AgentForge: Forging Agentic Intelligence through Posttraining Scaling
- Title(参考訳): Klear-AgentForge: ポストトレーニングスケーリングによるエージェントインテリジェンスの生成
- Authors: Qi Wang, Hongzhi Zhang, Jia Fu, Kai Fu, Yahui Liu, Tinghai Zhang, Chenxi Sun, Gangwei Jiang, Jingyi Tang, Xingguang Ji, Yang Yue, Jingyuan Zhang, Fuzheng Zhang, Kun Gai, Guorui Zhou,
- Abstract要約: 我々は,Klear-Qwen3-AgentForgeという高性能エージェントモデルを学習するための,包括的で完全なオープンソースパイプラインを提案する。
合成データを用いた効率的な教師付き微調整(SFT)とマルチターン強化学習(RL)を併用し,多種多様なエージェントタスクの可能性を解き放つ。
- 参考スコア(独自算出の注目度): 46.593200463657645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the proliferation of powerful agentic models, the lack of critical post-training details hinders the development of strong counterparts in the open-source community. In this study, we present a comprehensive and fully open-source pipeline for training a high-performance agentic model for interacting with external tools and environments, named Klear-Qwen3-AgentForge, starting from the Qwen3-8B base model. We design effective supervised fine-tuning (SFT) with synthetic data followed by multi-turn reinforcement learning (RL) to unlock the potential for multiple diverse agentic tasks. We perform exclusive experiments on various agentic benchmarks in both tool use and coding domains. Klear-Qwen3-AgentForge-8B achieves state-of-the-art performance among LLMs of similar size and remains competitive with significantly larger models.
- Abstract(参考訳): 強力なエージェントモデルの普及にもかかわらず、トレーニング後の重要な詳細の欠如は、オープンソースコミュニティにおいて強力なエージェントの開発を妨げる。
本研究では,Qwen3-8Bベースモデルから始まるKlear-Qwen3-AgentForgeという,外部ツールや環境と対話するための高性能なエージェントモデルを学習するための,包括的で完全なオープンソースパイプラインを提案する。
合成データを用いた効率的な教師付き微調整(SFT)とマルチターン強化学習(RL)を併用し,多種多様なエージェントタスクの可能性を解き放つ。
ツールの使用とコーディングの両領域において,各種エージェントベンチマークの排他的実験を実施している。
Klear-Qwen3-AgentForge-8Bは、同じ大きさのLLMで最先端のパフォーマンスを実現し、かなり大きなモデルと競合する。
関連論文リスト
- Demystifying Reinforcement Learning in Agentic Reasoning [90.3737088727791]
エージェント推論における強化学習のデミスティフィケーションのための包括的かつ体系的な調査を行う。
i) 縫合された合成軌道を、実際のエンドツーエンドのツール・ツー・ユース・トラジェクトリに置き換えることで、より強力なSFTが得られる。
探索フレンドリーな技術は、高いクリップ、過剰な報酬形成、適切なポリシーエントロピーの維持といったエージェントRLにとって不可欠であり、訓練効率を向上させることができる。
論文 参考訳(メタデータ) (2025-10-13T17:57:15Z) - TOUCAN: Synthesizing 1.5M Tool-Agentic Data from Real-World MCP Environments [30.078263383249862]
Toucanは、これまでで最大規模のツール・アジェンティックデータセットである。
多様な、現実的で、挑戦的なタスクを、実際のツールの実行を含む軌道で生成します。
論文 参考訳(メタデータ) (2025-10-01T17:58:03Z) - Scaling Agents via Continual Pre-training [80.97989245493326]
我々は,エージェント連続事前学習(Agentic CPT)を深層研究エージェント訓練パイプラインに組み込んで,強力なエージェント基礎モデルを構築することを提案する。
我々は,AgentFounder-30Bを10のベンチマークで評価し,強力なツール使用能力を保ちながら最先端のパフォーマンスを実現した。
論文 参考訳(メタデータ) (2025-09-16T17:57:19Z) - Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL [41.847359443133776]
CoA(Chain-of-Agents)は、大規模言語モデル(LLM)推論の新しいパラダイムであり、ネイティブなエンドツーエンドの複雑な問題解決を可能にする。
我々は, エージェント制御微調整のための多エージェント蒸留フレームワークを導入し, 最先端のマルチエージェントシステムをチェーン・オブ・エージェント・トラジェクトリに蒸留する。
次に、検証可能なエージェントタスクに対するエージェント強化学習を用いて、チェーン・オブ・エージェントの問題解決におけるモデルの能力をさらに向上する。
論文 参考訳(メタデータ) (2025-08-06T17:01:02Z) - Training Long-Context, Multi-Turn Software Engineering Agents with Reinforcement Learning [29.605396813225386]
マルチターン対話型タスクにおけるエージェントの訓練に強化学習をどのように利用できるかを示す。
本手法は,オープンウェイトモデルを用いた多ターン対話タスクのための有能エージェントの訓練のための実践的アプローチを提供する。
論文 参考訳(メタデータ) (2025-08-05T14:30:47Z) - xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
AIエージェントタスク用に設計された大規模なアクションモデルであるxLAMをリリースする。
xLAMは、複数のエージェント能力ベンチマークで例外的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-05T03:22:22Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
タスクに適合する1つのアーキテクチャを設計し、汎用的なマルチエージェント強化学習パイプラインを最初に試行する。
従来のRNNモデルとは異なり、トランスフォーマーモデルを用いてフレキシブルなポリシーを生成する。
提案方式はUPDeT(Universal Policy Decoupling Transformer)と名付けられ,動作制限を緩和し,マルチエージェントタスクの決定プロセスをより説明しやすいものにする。
論文 参考訳(メタデータ) (2021-01-20T07:24:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。