論文の概要: Advancements in synthetic data extraction for industrial injection molding
- arxiv url: http://arxiv.org/abs/2511.08117v1
- Date: Wed, 12 Nov 2025 01:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.651293
- Title: Advancements in synthetic data extraction for industrial injection molding
- Title(参考訳): 工業用射出成形用合成データ抽出技術の進歩
- Authors: Georg Rottenwalter, Marcel Tilly, Christian Bielenberg, Katharina Obermeier,
- Abstract要約: 射出成形プロセスのトレーニングプロセスに合成データを組み込むことの可能性を検討する。
以上の結果から,合成データを含めることで,異なるシナリオを扱えるモデルの性能が向上することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has significant potential for optimizing various industrial processes. However, data acquisition remains a major challenge as it is both time-consuming and costly. Synthetic data offers a promising solution to augment insufficient data sets and improve the robustness of machine learning models. In this paper, we investigate the feasibility of incorporating synthetic data into the training process of the injection molding process using an existing Long Short-Term Memory architecture. Our approach is to generate synthetic data by simulating production cycles and incorporating them into the training data set. Through iterative experimentation with different proportions of synthetic data, we attempt to find an optimal balance that maximizes the benefits of synthetic data while preserving the authenticity and relevance of real data. Our results suggest that the inclusion of synthetic data improves the model's ability to handle different scenarios, with potential practical industrial applications to reduce manual labor, machine use, and material waste. This approach provides a valuable alternative for situations where extensive data collection and maintenance has been impractical or costly and thus could contribute to more efficient manufacturing processes in the future.
- Abstract(参考訳): 機械学習は、様々な産業プロセスの最適化に重要な可能性を秘めている。
しかし、データ取得は時間とコストの両方がかかるため、依然として大きな課題である。
合成データは、不十分なデータセットを拡張し、機械学習モデルの堅牢性を改善するための有望なソリューションを提供する。
本稿では, 既存のLong Short-Term Memory アーキテクチャを用いて, 射出成形プロセスのトレーニングプロセスに合成データを組み込むことの実現可能性について検討する。
我々のアプローチは、生産サイクルをシミュレートし、それらをトレーニングデータセットに組み込むことによって、合成データを生成することである。
合成データの比率の異なる反復実験を通じて、実データの信頼性と妥当性を保ちながら、合成データの利点を最大化する最適なバランスを求める。
以上の結果から, 合成データの導入により, 各種シナリオの処理能力が向上し, 手作業, 機械使用, 材料廃棄物の削減に活用できる可能性が示唆された。
このアプローチは、大規模なデータ収集とメンテナンスが非現実的あるいはコスト的に行われており、将来的にはより効率的な製造プロセスに寄与する可能性がある状況に対して、価値ある代替手段を提供する。
関連論文リスト
- Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference [89.5628648718851]
因果推論は医療介入の開発と評価に不可欠である。
現実の医療データセットは、規制障壁のためアクセスが難しいことが多い。
本稿では,医学における治療効果分析のための新しい合成データ生成法STEAMを提案する。
論文 参考訳(メタデータ) (2025-10-21T16:16:00Z) - Understanding the Influence of Synthetic Data for Text Embedders [52.04771455432998]
まず,Wangらによって提案された合成データの再生と公開を行った。
合成データがモデル一般化をどのように改善するかを批判的に検討する。
本研究は, 汎用インバータ構築における, 現在の合成データ手法の限界を浮き彫りにしたものである。
論文 参考訳(メタデータ) (2025-09-07T19:28:52Z) - Valid Inference with Imperfect Synthetic Data [39.10587411316875]
モーメントの一般化法に基づく新しい推定器を提案する。
合成データのモーメント残差と実データのモーメント間の相互作用は、対象パラメータの推定を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2025-08-08T18:32:52Z) - Contrastive Learning-Enhanced Trajectory Matching for Small-Scale Dataset Distillation [0.7560883489000576]
画像合成におけるコントラスト学習を統合した新しいデータセット蒸留法を提案する。
提案手法は,データセットのサイズが著しく制約された場合でも,より情報的かつ多様な合成サンプルを生成する。
論文 参考訳(メタデータ) (2025-05-21T08:46:29Z) - Synthline: A Product Line Approach for Synthetic Requirements Engineering Data Generation using Large Language Models [0.5156484100374059]
本稿では,大規模言語モデルを用いて合成要求工学(RE)データを生成する製品ライン(PL)アプローチであるSynthlineを紹介する。
我々の分析によると、合成データセットは実際のデータよりも多様性が低いが、実行可能なトレーニングリソースとして機能するには十分である。
以上の結果から, 合成データと実データを組み合わせることで, 大幅な性能向上が期待できる。
論文 参考訳(メタデータ) (2025-05-06T07:57:16Z) - Scaling Laws of Synthetic Data for Language Models [125.41600201811417]
プレトレーニングコーパスを多種多様な高品質な合成データセットに変換するスケーラブルなフレームワークであるSynthLLMを紹介した。
提案手法は,グラフアルゴリズムを用いて複数の文書にまたがるハイレベルな概念を自動的に抽出し,再結合することで実現している。
論文 参考訳(メタデータ) (2025-03-25T11:07:12Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Enhancing Indoor Temperature Forecasting through Synthetic Data in Low-Data Environments [42.8983261737774]
合成データ生成のためのSoTA AI を用いたデータ拡張手法の有効性について検討する。
そこで本研究では,実データと合成データの融合戦略を探求し,予測モデルの改善を図る。
論文 参考訳(メタデータ) (2024-06-07T12:36:31Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
本研究では,合成データと実世界のデータとの等価性,実データに対する合成データの置換可能性,合成データ生成装置の柔軟性について検討する。
以上の結果から, 合成データによりモデル性能が向上するだけでなく, 実データへの置換性も向上し, 性能損失の60%から80%が置換可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-24T17:21:32Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。