論文の概要: Reinforcement Learning Control of Quantum Error Correction
- arxiv url: http://arxiv.org/abs/2511.08493v1
- Date: Wed, 12 Nov 2025 02:01:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.837989
- Title: Reinforcement Learning Control of Quantum Error Correction
- Title(参考訳): 量子エラー補正の強化学習制御
- Authors: Volodymyr Sivak, Alexis Morvan, Michael Broughton, Matthew Neeley, Alec Eickbusch, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Brian Ballard, Joseph C. Bardin, Hector Bates, Andreas Bengtsson, Majid Bigdeli Karimi, Alexander Bilmes, Simon Bilodeau, Felix Borjans, Alexandre Bourassa, Jenna Bovaird, Dylan Bowers, Leon Brill, Peter Brooks, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Jamal Busnaina, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Silas Chen, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Bryan Cochrane, Matt Cockrell, Josh Cogan, Roberto Collins, Paul Conner, Harold Cook, Rodrigo G. Cortiñas, William Courtney, Alexander L. Crook, Ben Curtin, Martin Damyanov, Sayan Das, Dripto M. Debroy, Sean Demura, Paul Donohoe, Ilya Drozdov, Andrew Dunsworth, Valerie Ehimhen, Aviv Moshe Elbag, Lior Ella, Mahmoud Elzouka, David Enriquez, Catherine Erickson, Vinicius S. Ferreira, Marcos Flores, Leslie Flores Burgos, Ebrahim Forati, Jeremiah Ford, Austin G. Fowler, Brooks Foxen, Masaya Fukami, Alan Wing Lun Fung, Lenny Fuste, Suhas Ganjam, Gonzalo Garcia, Christopher Garrick, Robert Gasca, Helge Gehring, Robert Geiger, Élie Genois, William Giang, Dar Gilboa, James E. Goeders, Edward C. Gonzales, Raja Gosula, Stijn J. de Graaf, Alejandro Grajales Dau, Dietrich Graumann, Joel Grebel, Alex Greene, Jonathan A. Gross, Jose Guerrero, Loïck Le Guevel, Tan Ha, Steve Habegger, Tanner Hadick, Ali Hadjikhani, Matthew P. Harrigan, Sean D. Harrington, Jeanne Hartshorn, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Hsin-Yuan Huang, Mike Hucka, Christopher Hudspeth, Ashley Huff, William J. Huggins, Evan Jeffrey, Shaun Jevons, Zhang Jiang, Xiaoxuan Jin, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Dvir Kafri, Hui Kang, Kiseo Kang, Amir H. Karamlou, Ryan Kaufman, Kostyantyn Kechedzhi, Tanuj Khattar, Mostafa Khezri, Seon Kim, Can M. Knaut, Bryce Kobrin, Fedor Kostritsa, John Mark Kreikebaum, Ryuho Kudo, Ben Kueffler, Arun Kumar, Vladislav D. Kurilovich, Vitali Kutsko, Nathan Lacroix, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Justin Ledford, Joy Lee, Kenny Lee, Brian J. Lester, Wendy Leung, Lily Li, Wing Yan Li, Ming Li, Alexander T. Lill, William P. Livingston, Matthew T. Lloyd, Aditya Locharla, Laura De Lorenzo, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Aniket Maiti, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Eric Mascot, Paul Masih Das, Dmitri Maslov, Melvin Mathews, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Kevin C. Miao, Zlatko K. Minev, Reza Molavi, Sebastian Molina, Shirin Montazeri, Charles Neill, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, Logan Oas, Raymond Orosco, Kristoffer Ottosson, Alice Pagano, Agustin Di Paolo, Sherman Peek, David Peterson, Alex Pizzuto, Elias Portoles, Rebecca Potter, Orion Pritchard, Michael Qian, Chris Quintana, Arpit Ranadive, Matthew J. Reagor, Rachel Resnick, David M. Rhodes, Daniel Riley, Gabrielle Roberts, Roberto Rodriguez, Emma Ropes, Lucia B. De Rose, Eliott Rosenberg, Emma Rosenfeld, Dario Rosenstock, Elizabeth Rossi, Pedram Roushan, David A. Rower, Robert Salazar, Kannan Sankaragomathi, Murat Can Sarihan, Kevin J. Satzinger, Max Schaefer, Sebastian Schroeder, Henry F. Schurkus, Aria Shahingohar, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, David A. Sobel, Barrett Spells, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alexander Sztein, Madeline Taylor, Jothi Priyanka Thiruraman, Douglas Thor, Dogan Timucin, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Hao Tran, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Meghan Voorhees, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Brayden Ware, James D. Watson, Yonghua Wei, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Christopher J. Wood, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Elliot Young, Grayson Young, Adam Zalcman, Ran Zhang, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Zhenjie Zou, Ryan Babbush, Dave Bacon, Sergio Boixo, Yu Chen, Zijun Chen, Michel Devoret, Monica Hansen, Jeremy Hilton, Cody Jones, Julian Kelly, Alexander N. Korotkov, Erik Lucero, Anthony Megrant, Hartmut Neven, William D. Oliver, Ganesh Ramachandran, Vadim Smelyanskiy, Paul V. Klimov,
- Abstract要約: 量子コンピュータは、エラーから直接自己改善することを学び、決してコンピューティングを止めない。
この研究によって新しいパラダイムが実現された: 量子コンピュータは、そのエラーから直接自己改善を学び、決してコンピューティングを止めない。
- 参考スコア(独自算出の注目度): 108.70420561323692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The promise of fault-tolerant quantum computing is challenged by environmental drift that relentlessly degrades the quality of quantum operations. The contemporary solution, halting the entire quantum computation for recalibration, is unsustainable for the long runtimes of the future algorithms. We address this challenge by unifying calibration with computation, granting the quantum error correction process a dual role: its error detection events are not only used to correct the logical quantum state, but are also repurposed as a learning signal, teaching a reinforcement learning agent to continuously steer the physical control parameters and stabilize the quantum system during the computation. We experimentally demonstrate this framework on a superconducting processor, improving the logical error rate stability of the surface code 3.5-fold against injected drift and pushing the performance beyond what is achievable with state-of-the-art traditional calibration and human-expert tuning. Simulations of surface codes up to distance-15 confirm the scalability of our method, revealing an optimization speed that is independent of the system size. This work thus enables a new paradigm: a quantum computer that learns to self-improve directly from its errors and never stops computing.
- Abstract(参考訳): フォールトトレラント量子コンピューティングの約束は、量子演算の質を絶え間なく劣化させる環境ドリフトによって挑戦されている。
現代の解法は、再校正のために量子計算全体を停止させ、将来のアルゴリズムの長期実行には持続不可能である。
我々は、この課題に対処するために、キャリブレーションと計算を統一し、量子エラー訂正プロセスに二重の役割を与える:そのエラー検出イベントは、論理量子状態を補正するために使われるだけでなく、学習信号として再利用され、強化学習エージェントに物理制御パラメータを連続的に操り、計算中に量子システムを安定化させるように教える。
この枠組みを超伝導プロセッサ上で実験的に実証し、注入ドリフトに対する表面コード3.5倍の論理誤差率安定性を改善し、最先端の従来のキャリブレーションと人間の熟練したチューニングで達成可能なものを超えて性能を推し進める。
距離15までの曲面符号のシミュレーションにより,提案手法のスケーラビリティを確認し,システムサイズに依存しない最適化速度を明らかにする。
これにより、新しいパラダイム — エラーから直接自己改善を学び、コンピューティングを停止しない量子コンピュータ — が実現される。
関連論文リスト
- Digital quantum simulation of many-body systems: Making the most of intermediate-scale, noisy quantum computers [51.56484100374058]
この論文は量子デバイス上の量子力学をシミュレートすることを中心にしている。
本稿では,量子力学における最も関連性の高い量子アルゴリズムの概要を紹介する。
近い将来に量子シミュレーションの恩恵を受けることができる量子力学における関連する問題を同定する。
論文 参考訳(メタデータ) (2025-08-29T10:37:19Z) - State-adaptive quantum error correction and fault-tolerant quantum computing [0.0]
状態適応型量子誤り訂正(SAQEC)の理論的枠組みを提案する。
量子状態の知識を誤り訂正プロセスに組み込むことで、コヒーレントな情報ではなく、量子相互情報によって支配される新しいキャパシティ体制を確立する。
論文 参考訳(メタデータ) (2025-08-08T04:51:13Z) - Scalable quantum measurement error mitigation via conditional
independence and transfer learning [0.951828574518325]
量子システムにおける測定誤差を量子誤差補正に頼ることなく軽減することは、量子技術の実用化に不可欠である。
深層学習に基づく量子計測誤差軽減は、非線形ノイズを補正する能力のため、線形反転法よりも有利である。
本稿では,遠隔量子ビットの独立性を活用し,転送学習手法を取り入れたスケーラブルな量子計測誤差低減手法を提案する。
論文 参考訳(メタデータ) (2023-08-01T06:39:01Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Long-Time Error-Mitigating Simulation of Open Quantum Systems on Near Term Quantum Computers [38.860468003121404]
本研究では,最大2千個のエンタングゲートを含むディープ回路においても,ハードウェアエラーに対する堅牢性を示す量子ハードウェア上でのオープン量子システムシミュレーションについて検討する。
我々は, 無限の熱浴に結合した2つの電子系をシミュレートする: 1) 駆動電界における放散自由電子系, 2) 磁場中の単一軌道における2つの相互作用電子の熱化 - ハバード原子。
この結果から, 開放量子系シミュレーションアルゴリズムは, ノイズの多いハードウェア上で, 同様に複雑な非散逸性アルゴリズムをはるかに上回ることができることを示した。
論文 参考訳(メタデータ) (2021-08-02T21:36:37Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - Protecting a Bosonic Qubit with Autonomous Quantum Error Correction [2.1806044218454854]
原理的には、量子系内の散逸を調整することで、量子エラー補正を自律的かつ連続的に実現することができる。
ここでは超伝導空洞のSchr"odinger cat様多光子状態の論理量子ビットを符号化する。
この受動的プロトコルは、単光子損失に対する自律的な補正を実現し、多光子量子ビットのコヒーレンス時間を2倍に向上させる。
論文 参考訳(メタデータ) (2020-04-20T14:14:27Z) - Variationally Scheduled Quantum Simulation [0.0]
本研究では,アディベート状態準備の文脈内で最適なスケジューリング手順を決定するための変分法について検討する。
量子エラー補正がなければ、何らかの意味のある時間にわたって量子デバイスを動作させると、システムは関連する情報の喪失に陥る。
我々の変分法は、量子コンピューティングの領域でよく見られる制御誤差に対するレジリエンスを示す。
論文 参考訳(メタデータ) (2020-03-22T14:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。