論文の概要: Learn More, Forget Less: A Gradient-Aware Data Selection Approach for LLM
- arxiv url: http://arxiv.org/abs/2511.08620v1
- Date: Thu, 13 Nov 2025 01:00:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.14711
- Title: Learn More, Forget Less: A Gradient-Aware Data Selection Approach for LLM
- Title(参考訳): LLMのためのグラディエント・アウェアなデータ選択アプローチ
- Authors: Yibai Liu, Shihang Wang, Zeming Liu, Zheming Song, Junzhe Wang, Jingjing Liu, Qingjie Liu, Yunhong Wang,
- Abstract要約: 大規模言語モデル(LLM)の教師付き微調整のための自己適応型勾配対応データ選択手法(GrADS)を提案する。
具体的には、勾配の大きさと統計的分布を利用した自己指導型基準を設計し、モデルの学習プロセスに最も寄与する例を優先する。
GrADSは、医学、法学、金融など様々な分野にまたがる様々なLLMの広範な実験を通じて、大幅な効率性と費用対効果を示してきた。
- 参考スコア(独自算出の注目度): 51.21051698747157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite large language models (LLMs) have achieved impressive achievements across numerous tasks, supervised fine-tuning (SFT) remains essential for adapting these models to specialized domains. However, SFT for domain specialization can be resource-intensive and sometimes leads to a deterioration in performance over general capabilities due to catastrophic forgetting (CF). To address these issues, we propose a self-adaptive gradient-aware data selection approach (GrADS) for supervised fine-tuning of LLMs, which identifies effective subsets of training data by analyzing gradients obtained from a preliminary training phase. Specifically, we design self-guided criteria that leverage the magnitude and statistical distribution of gradients to prioritize examples that contribute the most to the model's learning process. This approach enables the acquisition of representative samples that enhance LLMs understanding of domain-specific tasks. Through extensive experimentation with various LLMs across diverse domains such as medicine, law, and finance, GrADS has demonstrated significant efficiency and cost-effectiveness. Remarkably, utilizing merely 5% of the selected GrADS data, LLMs already surpass the performance of those fine-tuned on the entire dataset, and increasing to 50% of the data results in significant improvements! With catastrophic forgetting substantially mitigated simultaneously. We will release our code for GrADS later.
- Abstract(参考訳): 大規模言語モデル (LLM) は、多くのタスクで素晴らしい成果を上げているが、これらのモデルを特殊なドメインに適応させるためには、教師付き微調整 (SFT) が不可欠である。
しかし、ドメイン特殊化のためのSFTは資源集約的であり、時には破滅的忘れ(CF)による一般的な能力よりも性能が低下することがある。
これらの課題に対処するために,予備訓練段階から得られた勾配を解析することにより,学習データの効果的なサブセットを識別する,LLMの教師付き微調整のための自己適応的勾配対応データ選択手法(GrADS)を提案する。
具体的には、勾配の大きさと統計的分布を利用した自己指導型基準を設計し、モデルの学習プロセスに最も寄与する例を優先する。
このアプローチにより、ドメイン固有のタスクのLLM理解を高める代表サンプルの取得が可能になる。
GrADSは、医学、法学、金融など様々な分野にまたがる様々なLLMの広範な実験を通じて、大幅な効率性と費用対効果を示してきた。
注目すべきなのは、選択されたGrADSデータの5%しか利用していないため、LLMはデータセット全体の微調整されたデータのパフォーマンスをすでに上回っており、データの50%まで増加して、大幅な改善が得られています!
破滅的な忘れ物は同時に大幅に緩和された。
GrADSのコードを後でリリースします。
関連論文リスト
- Test-Time Learning for Large Language Models [33.11605667376906]
大規模言語モデル(LLM)のためのテスト時間学習(TTL)パラダイムを提案する。
LLMはテスト中にラベルなしのテストデータのみを使用してターゲットドメインに動的に適応する。
TLMはドメイン知識適応における元のLLMと比較して少なくとも20%性能が向上することを示す。
論文 参考訳(メタデータ) (2025-05-27T02:18:59Z) - Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning [65.23593936798662]
LLM生成データによる微調整により,目標タスクの性能が向上し,非目標タスクの劣化が低減されることを示す。
微調整後のLSMにおける破滅的忘れを緩和するために、トークンの難易度低減に基づく経験的説明を提供する最初の研究である。
論文 参考訳(メタデータ) (2025-01-24T08:18:56Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
大規模言語モデル(LLM)は、大量のデータセットの事前トレーニングを通じて、広範囲な世界の知識を符号化する。
我々は,事前学習したLLMが記憶する知識の量に基づいて,教師付き微調整(SFT)データを分類した。
実験の結果,SFTの段階では60個のデータポイントが事前学習中に符号化された知識を活性化することができ,LLMがQAタスクを実行できることがわかった。
論文 参考訳(メタデータ) (2024-09-24T07:38:38Z) - EcomGPT-CT: Continual Pre-training of E-commerce Large Language Models
with Semi-structured Data [67.8302955948861]
大規模コーパスで事前訓練された大規模言語モデル(LLM)は、様々なNLPタスクにおいて顕著な性能を示した。
これらのモデルを特定のドメインに適用しても、ドメイン知識の欠如など、大きな課題が生じる。
我々は、Eコマースドメインを例として用いたLLMのドメイン固有の継続事前学習に焦点を当てた。
論文 参考訳(メタデータ) (2023-12-25T11:31:47Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。