論文の概要: A Generalized Bias-Variance Decomposition for Bregman Divergences
- arxiv url: http://arxiv.org/abs/2511.08789v1
- Date: Thu, 13 Nov 2025 01:07:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.227025
- Title: A Generalized Bias-Variance Decomposition for Bregman Divergences
- Title(参考訳): ブレグマンダイバージェンスの一般化バイアス分散分解
- Authors: David Pfau,
- Abstract要約: 本稿では,予測誤差がブレグマン偏差である偏差分解の一般化について述べる。
結果はすでに分かっていますが,これまでは明確でスタンドアローンな派生は存在せず,教育的な目的のために提供しています。
- 参考スコア(独自算出の注目度): 1.9483779836489397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The bias-variance decomposition is a central result in statistics and machine learning, but is typically presented only for the squared error. We present a generalization of the bias-variance decomposition where the prediction error is a Bregman divergence, which is relevant to maximum likelihood estimation with exponential families. While the result is already known, there was not previously a clear, standalone derivation, so we provide one for pedagogical purposes. A version of this note previously appeared on the author's personal website without context. Here we provide additional discussion and references to the relevant prior literature.
- Abstract(参考訳): バイアス分散分解は統計学や機械学習において中心的な結果であるが、通常は二乗誤差に対してのみ示される。
本稿では,予測誤差がブレグマン偏差である偏差分解の一般化について述べる。
結果はすでに分かっていますが,これまでは明確でスタンドアローンな派生は存在せず,教育的な目的のために提供しています。
このノートは以前、著者の個人ウェブサイトに文脈のない形で掲載されていた。
ここでは、関連する先行文献に関する追加の議論と参照を提供する。
関連論文リスト
- Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Uncertainty Estimates of Predictions via a General Bias-Variance
Decomposition [7.811916700683125]
本稿では,適切なスコアに対するバイアス分散分解を導入し,分散項としてブレグマン情報を導出する。
モデルアンサンブルや信頼領域を含む下流タスクにおけるこの分解の実践的妥当性を示す。
論文 参考訳(メタデータ) (2022-10-21T21:24:37Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - Ensembling over Classifiers: a Bias-Variance Perspective [13.006468721874372]
Pfau (2013) による偏差分解の拡張の上に構築し, 分類器のアンサンブルの挙動に関する重要な知見を得る。
条件付き推定は必然的に既約誤差を生じさせることを示す。
経験的に、標準的なアンサンブルはバイアスを減少させ、この予期せぬ減少のために、分類器のアンサンブルがうまく機能するかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2022-06-21T17:46:35Z) - Understanding the bias-variance tradeoff of Bregman divergences [13.006468721874372]
本稿では,任意のブレグマン発散損失関数に対するバイアス分散トレードオフを一般化したPfau (2013) の業績に基づく。
ラベルと同様、中心予測は確率変数の平均と解釈でき、損失関数自身で定義される双対空間で平均が動作することを示す。
論文 参考訳(メタデータ) (2022-02-08T22:06:16Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
本稿では、因果的観点からの包括的ミニマックス分析について述べる。
最小の最悪のリスクを持つサブセットを探索する効率的なアルゴリズムを提案する。
本手法の有効性と有効性は, 合成データとアルツハイマー病の診断で実証された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
本稿では,男女差の増幅問題について,分布の観点から検討する。
後続正則化に基づくバイアス緩和手法を提案する。
私たちの研究はバイアス増幅の理解に光を当てている。
論文 参考訳(メタデータ) (2020-05-13T11:07:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。