論文の概要: Enabling Agents to Communicate Entirely in Latent Space
- arxiv url: http://arxiv.org/abs/2511.09149v1
- Date: Thu, 13 Nov 2025 01:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.435961
- Title: Enabling Agents to Communicate Entirely in Latent Space
- Title(参考訳): 潜時空間で通信するエージェントの開発
- Authors: Zhuoyun Du, Runze Wang, Huiyu Bai, Zouying Cao, Xiaoyong Zhu, Bo Zheng, Wei Chen, Haochao Ying,
- Abstract要約: 直接伝送のための心の表現としてLLMの最後の隠れ状態を利用するパラダイムであるInter-agent Latent Space Communicationを提案する。
追加の圧縮プロセスは、完全な潜在空間推論を通じて潜在通信をさらに圧縮する。
実験により、Interlatは微調整されたチェーン・オブ・シークレット(CoT)のプロンプトと単一エージェントのベースラインの両方より優れていることが示された。
- 参考スコア(独自算出の注目度): 19.98668682094137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by human mind-reading, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the last hidden states of an LLM as a representation of its mind for direct transmission (termed latent communication). An additional compression process further compresses latent communication via entirely latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
- Abstract(参考訳): 自然言語はLLMベースのエージェントの事実上の通信媒体であるが、基本的な制約を提示する。
豊かで内部の潜伏状態から離散トークンにダウンサンプリングするプロセスは、本質的に伝達できる情報の深さとニュアンスを制限し、協調的な問題解決を妨げる。
人間のマインドリーダーに触発されたインターラト(Inter-agent Latent Space Communication)は,LSMの最後の隠れ状態を,直接伝達(終端潜時通信)の心の表現として活用するパラダイムである。
追加の圧縮プロセスは、完全な潜在空間推論を通じて潜在通信をさらに圧縮する。
実験により、Interlatは微調整されたチェーン・オブ・シークレット(CoT)のプロンプトと単一エージェントのベースラインの両方を上回り、より探索的な振る舞いを促進し、潜時情報の真に活用できるようにする。
さらなる圧縮は推論を大幅に加速するだけでなく、効率的な情報保存機構を通じて競争性能も維持する。
我々は、この研究を、完全に潜伏した空間間コミュニケーションの実現可能性研究として位置づけ、その可能性を強調し、将来の研究に貴重な洞察を提供する。
関連論文リスト
- Learning to Interact in World Latent for Team Coordination [53.51290193631586]
本研究は,多エージェント強化学習(MARL)におけるチーム協調を支援するために,対話型ワールドラテント(IWoL)という新しい表現学習フレームワークを提案する。
コミュニケーションプロトコルを直接モデル化することにより,エージェント間関係とタスク固有の世界情報とを協調的にキャプチャする学習可能な表現空間を構築する。
私たちの表現は、各エージェントの暗黙のラテントとしてだけでなく、コミュニケーションのための明示的なメッセージとしても使用できます。
論文 参考訳(メタデータ) (2025-09-29T22:13:39Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Bidirectional Emergent Language in Situated Environments [4.950411915351642]
マルチエージェントポンとコレクターの2つの新しい協調環境を紹介した。
最適なパフォーマンスには通信プロトコルの出現が必要ですが、適度な成功はそれなしで達成できます。
エージェントは意味のあるメッセージのみを生成し、調整なしでは成功できない状態の受信メッセージに作用する。
論文 参考訳(メタデータ) (2024-08-26T21:25:44Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
互いに効果的に効率的にコミュニケーションできる人工エージェントをいかに設計するかは、不明である。
強化学習(RL)を用いたコミュニケーションの出現に関する研究
エージェントがコミュニケーションを行うための環境行為を強制しなければならない多段階タスクにおける位置的コミュニケーションについて検討する。
テストされたすべてのプレッシャーは過剰なコミュニケーションを阻害する可能性があるが、位置通信は最も効果的であり、努力のコストとは異なり、発生に悪影響を及ぼさない。
論文 参考訳(メタデータ) (2022-11-02T21:08:14Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
本稿では,コラボレーティブな多目的ナビゲーションタスクCoMONを紹介する。
この課題において、オラクルエージェントは、地図の形式で詳細な環境情報を有する。
視覚的に環境を知覚するナビゲーターエージェントと通信し、目標のシーケンスを見つけるのが任務である。
創発的コミュニケーションはエージェントの観察と3次元環境の空間構造に基礎を置くことができることを示す。
論文 参考訳(メタデータ) (2021-10-12T06:56:11Z) - Emergent Discrete Communication in Semantic Spaces [3.2280079436668996]
本稿では,学習された連続空間から導出される離散トークンを介してエージェントが通信できるようにするニューラルエージェントアーキテクチャを提案する。
決定論の枠組みでは、我々の手法は幅広いシナリオでコミュニケーションを最適化するが、一方1ホットトークンは制約的な仮定の下では最適である。
セルフプレイ実験では、訓練されたエージェントが意味論的に意味のある方法でトークンをクラスタリングすることを学び、ノイズの多い環境でコミュニケーションできることを検証する。
論文 参考訳(メタデータ) (2021-08-04T03:32:48Z) - Learning Emergent Discrete Message Communication for Cooperative
Reinforcement Learning [36.468498804251574]
離散メッセージ通信は連続メッセージ通信に匹敵する性能を有することを示す。
エージェントに離散的なメッセージを対話的に送信できるアプローチを提案します。
論文 参考訳(メタデータ) (2021-02-24T20:44:14Z) - Emergence of Pragmatics from Referential Game between Theory of Mind
Agents [64.25696237463397]
エージェントが手書きのルールを指定せずに「行間を読む」能力を自発的に学習するアルゴリズムを提案する。
協調型マルチエージェント教育状況における心の理論(ToM)を統合し,適応型強化学習(RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-21T19:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。