論文の概要: SecTracer: A Framework for Uncovering the Root Causes of Network Intrusions via Security Provenance
- arxiv url: http://arxiv.org/abs/2511.09266v1
- Date: Thu, 13 Nov 2025 01:43:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.492505
- Title: SecTracer: A Framework for Uncovering the Root Causes of Network Intrusions via Security Provenance
- Title(参考訳): SecTracer: セキュリティ保護を通じてネットワーク侵入の原因を明らかにするフレームワーク
- Authors: Seunghyeon Lee, Hyunmin Seo, Hwanjo Heo, Anduo Wang, Seungwon Shin, Jinwoo Kim,
- Abstract要約: 本稿では,ネットワークレベルでホスト間の因果関係の体系的な確立を可能にする,ネットワークレベルのセキュリティ保証の概念を紹介する。
我々はSecTracerをネットワークワイド・プロファイランス分析のフレームワークとして提示する。
- 参考スコア(独自算出の注目度): 10.783751949995784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern enterprise networks comprise diverse and heterogeneous systems that support a wide range of services, making it challenging for administrators to track and analyze sophisticated attacks such as advanced persistent threats (APTs), which often exploit multiple vectors. To address this challenge, we introduce the concept of network-level security provenance, which enables the systematic establishment of causal relationships across hosts at the network level, facilitating the accurate identification of the root causes of security incidents. Building on this concept, we present SecTracer as a framework for a network-wide provenance analysis. SecTracer offers three main contributions: (i) comprehensive and efficient forensic data collection in enterprise networks via software-defined networking (SDN), (ii) reconstruction of attack histories through provenance graphs to provide a clear and interpretable view of intrusions, and (iii) proactive attack prediction using probabilistic models. We evaluated the effectiveness and efficiency of SecTracer through a real-world APT simulation, demonstrating its capability to enhance threat mitigation while introducing less than 1% network throughput overhead and negligible latency impact.
- Abstract(参考訳): 現代のエンタープライズネットワークは多様で異質なシステムで構成され、幅広いサービスをサポートするため、アドミニストレータが複数のベクタを利用する高度な永続的脅威(APT)のような高度な攻撃を追跡し分析することは困難である。
ネットワークレベルでの因果関係の体系的な確立を可能にし,セキュリティインシデントの根本原因の正確な同定を容易にする。
この概念に基づいて、ネットワークワイド・プロファイランス分析のためのフレームワークとしてSecTracerを提案する。
SecTracerは3つの主要なコントリビューションを提供する。
(i)ソフトウェア定義ネットワーク(SDN)による企業ネットワークにおける包括的で効率的な法医学データ収集
二 侵入の明確かつ解釈可能な見解を提供するための前兆図による攻撃履歴の復元
三 確率モデルによる攻撃予測
実世界のAPTシミュレーションを用いてSecTracerの有効性と効率を評価し、ネットワークスループットの1%未満のオーバーヘッドと無視可能なレイテンシの影響を導入しながら脅威軽減の能力を示す。
関連論文リスト
- Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
ディジタルツイン(DT)は、リアルタイム監視、予測、意思決定能力の向上を具現化する。
本研究では,分散ネットワークDTシステムにおけるセキュリティ上の課題について検討し,その後のネットワークアプリケーションの信頼性を損なう可能性がある。
論文 参考訳(メタデータ) (2024-07-02T03:32:09Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
バックドアは、ディープニューラルネットワーク(DNN)上の悪意あるアクターと、データ処理のためのクラウドサービスによって悪用される。
提案手法は高度テンソル分解アルゴリズムを利用して,事前学習したDNNの重みを慎重に解析し,バックドアモデルとクリーンモデルとの区別を行う。
この進歩は、ネットワークシステムにおけるディープラーニングとAIのセキュリティを強化し、新興技術の脅威の進化に対して不可欠なサイバーセキュリティを提供する。
論文 参考訳(メタデータ) (2024-03-13T03:10:11Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Eroding Trust In Aerial Imagery: Comprehensive Analysis and Evaluation
Of Adversarial Attacks In Geospatial Systems [24.953306643091484]
地理空間システムにおける敵攻撃の信頼性を低下させる方法を示す。
高品質なSpaceNetデータセットを用いたリモートセンシングシステムに対する脅威を実証的に示す。
論文 参考訳(メタデータ) (2023-12-12T16:05:12Z) - netFound: Foundation Model for Network Security [10.84029318509573]
本稿では,新しいトランスフォーマーベースネットワーク基盤モデルであるnetFoundを紹介する。
我々は、事前学習のために、豊富なラベルのないネットワークテレメトリデータに自己教師付き学習技術を採用する。
実運用環境では,netFoundが隠れたネットワークコンテキストを効果的にキャプチャすることを示す。
論文 参考訳(メタデータ) (2023-10-25T22:04:57Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
過去数十年間、深刻な経済とプライバシーの被害を受けたサイバー攻撃の数が増加している。
本稿では,侵入検知タスクのトポロジ情報の提供を目的とした,フローのグラフとしての新しいネットワーク表現を提案する。
提案するグラフ構造を利用したグラフニューラルネットワーク(GNN)に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-11T16:10:12Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Global Robustness Verification Networks [33.52550848953545]
3つのコンポーネントからなるグローバルロバストネス検証フレームワークを開発した。
実現可能なルールベースのバックプロパゲーションを可能にする新しいネットワークアーキテクチャ Sliding Door Network (SDN)
合成データと実データの両方にアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T08:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。