論文の概要: On the Information-Theoretic Fragility of Robust Watermarking under Diffusion Editing
- arxiv url: http://arxiv.org/abs/2511.10933v1
- Date: Fri, 14 Nov 2025 03:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-17 22:42:18.417045
- Title: On the Information-Theoretic Fragility of Robust Watermarking under Diffusion Editing
- Title(参考訳): 拡散編集におけるロバスト透かしの情報理論的脆弱性について
- Authors: Yunyi Ni, Ziyu Yang, Ze Niu, Emily Davis, Finn Carter,
- Abstract要約: 強力な拡散ベースの画像生成と編集技術は、堅牢なウォーターマーキングスキームに新たな脅威をもたらす。
生成中の透かし信号を明示的にターゲットし,消去する誘導拡散攻撃アルゴリズムを提案する。
我々は,近年の深層学習に基づく透かし手法に対するアプローチを評価し,攻撃後のほぼゼロに近い透かし回復率を示す。
- 参考スコア(独自算出の注目度): 3.6210754412846327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust invisible watermarking embeds hidden information in images such that the watermark can survive various manipulations. However, the emergence of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we investigate the intersection of diffusion-based image editing and robust image watermarking. We analyze how diffusion-driven image edits can significantly degrade or even fully remove embedded watermarks from state-of-the-art robust watermarking systems. Both theoretical formulations and empirical experiments are provided. We prove that as a image undergoes iterative diffusion transformations, the mutual information between the watermarked image and the embedded payload approaches zero, causing watermark decoding to fail. We further propose a guided diffusion attack algorithm that explicitly targets and erases watermark signals during generation. We evaluate our approach on recent deep learning-based watermarking schemes and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Finally, we discuss ethical implications of such watermark removal capablities and provide design guidelines for future watermarking strategies to be more resilient in the era of generative AI.
- Abstract(参考訳): 目に見えない透かしは、透かしが様々な操作に耐えられるように、隠された情報を画像に埋め込む。
しかし、強力な拡散ベースの画像生成と編集技術の出現は、これらの透かしスキームに新たな脅威をもたらす。
本稿では拡散に基づく画像編集とロバストな画像透かしの交わりについて検討する。
拡散駆動画像編集が、最先端の堅牢な透かしシステムから組込み透かしを著しく劣化させるか、あるいは完全に除去する方法について分析する。
理論的定式化と実証実験の両方が提供される。
画像が反復拡散変換を受けると、透かし画像と組込みペイロードの相互情報はゼロに近づき、透かし復号が失敗する。
さらに、生成中の透かし信号を明示的にターゲットし、消去する誘導拡散攻撃アルゴリズムを提案する。
我々は,近年の深層学習に基づく透かし方式に対するアプローチを評価し,攻撃後のほぼゼロに近い透かし回復率を示すとともに,再生画像の高視認性を維持した。
最後に、このような透かし除去能力の倫理的意味について議論し、生成AIの時代において、将来の透かし戦略がより弾力性を持つように設計ガイドラインを提供する。
関連論文リスト
- Diffusion-Based Image Editing: An Unforeseen Adversary to Robust Invisible Watermarks [4.138397555991069]
強力な拡散ベースの画像生成と編集モデルは、埋め込みの透かしを不注意に取り除いたり歪んだりすることができる。
本稿では,拡散に基づく画像編集が,最先端のロバストな透かしを効果的に破壊できることを示す理論的,実証的な分析を行う。
画像から透かしを消去するために生成画像再生を用いた拡散誘導攻撃を提案する。
論文 参考訳(メタデータ) (2025-11-05T16:20:29Z) - Diffusion-Based Image Editing for Breaking Robust Watermarks [4.273350357872755]
強力な拡散ベースの画像生成と編集技術は、堅牢なウォーターマーキングスキームに新たな脅威をもたらす。
拡散駆動型画像再生プロセスでは,画像内容の保存中に埋め込み透かしを消去できることを示す。
生成中の透かし信号に特異的な誘導拡散攻撃を導入し,透かし検出性を著しく低下させた。
論文 参考訳(メタデータ) (2025-10-07T14:34:42Z) - DiffMark: Diffusion-based Robust Watermark Against Deepfakes [49.05095089309156]
ディープフェイクは、悪意のある顔操作を通じて、重大なセキュリティとプライバシーの脅威を引き起こす。
既存の透かし法はディープフェイク操作に対して十分な堅牢性を欠いていることが多い。
本稿では拡散モデルに基づく新しいロバストな透かしフレームワークDiffMarkを提案する。
論文 参考訳(メタデータ) (2025-07-02T07:29:33Z) - Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models [50.73220224678009]
ウォーターマーキングは、人工知能モデルによって生成された合成画像の起源を検証するために使用できる。
近年の研究では, 対象画像から表層画像への透かしを, 対角的手法を用いてフォージできることが示されている。
本稿では,最適化フリーで普遍的な透かし偽造のリスクが大きいことを明らかにする。
我々のアプローチは攻撃範囲を大きく広げ、現在の透かし技術の安全性により大きな課題をもたらす。
論文 参考訳(メタデータ) (2025-06-06T12:08:02Z) - Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [13.800130459253543]
拡散モデル出力にロバストで見えない透かしを埋め込む新しい透かし技術であるShallow Diffuseを導入する。
我々の理論的および経験的分析により,浅度拡散はデータ生成の一貫性と透かしの検出可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-28T14:51:04Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。