論文の概要: Enhancing Machine Learning Model Efficiency through Quantization and Bit Depth Optimization: A Performance Analysis on Healthcare Data
- arxiv url: http://arxiv.org/abs/2511.12568v1
- Date: Sun, 16 Nov 2025 12:08:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:24.380596
- Title: Enhancing Machine Learning Model Efficiency through Quantization and Bit Depth Optimization: A Performance Analysis on Healthcare Data
- Title(参考訳): 量子化とビット深さ最適化による機械学習モデルの効率化:医療データの性能解析
- Authors: Mitul Goswami, Romit Chatterjee,
- Abstract要約: 本研究の目的は,量子化とビット深度最適化技術を実装することで,複雑な学習モデルを最適化することである。
2つの医学データセットをケーススタディとして、ロジスティック回帰(LR)機械学習モデルを適用した。
その結果、時間的複雑性は著しく低下し、モデル精度は最適化後の最小値に留まった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research aims to optimize intricate learning models by implementing quantization and bit-depth optimization techniques. The objective is to significantly cut time complexity while preserving model efficiency, thus addressing the challenge of extended execution times in intricate models. Two medical datasets were utilized as case studies to apply a Logistic Regression (LR) machine learning model. Using efficient quantization and bit depth optimization strategies the input data is downscaled from float64 to float32 and int32. The results demonstrated a significant reduction in time complexity, with only a minimal decrease in model accuracy post-optimization, showcasing the state-of-the-art optimization approach. This comprehensive study concludes that the impact of these optimization techniques varies depending on a set of parameters.
- Abstract(参考訳): 本研究の目的は,量子化とビット深度最適化技術を実装することで,複雑な学習モデルを最適化することである。
目的は、モデルの効率を保ちながら、時間の複雑さを著しく削減することであり、複雑なモデルにおける実行時間の拡張という課題に対処することである。
2つの医学データセットをケーススタディとして、ロジスティック回帰(LR)機械学習モデルを適用した。
効率的な量子化とビット深度最適化戦略を用いて、入力データはfloat64からfloat32とint32にダウンスケールされる。
その結果, 時間的複雑性が著しく低下し, モデル精度の低下が最小限に抑えられ, 最先端の最適化手法が示された。
この総合的な研究は、これらの最適化手法の影響はパラメータの集合によって異なると結論付けている。
関連論文リスト
- Large Language Model Enhanced Particle Swarm Optimization for Hyperparameter Tuning for Deep Learning Models [2.3949320404005436]
Particle Swarm Optimization and Large Language Models (LLM) は、最適化とディープラーニングに個別に適用されている。
本研究は,モデル評価の低減と収束性向上のため,PLMをPSOに統合することで,このギャップに対処する。
提案手法は, 探索空間の探索を最適化し, 粒子配置を最適化する手法である。
論文 参考訳(メタデータ) (2025-04-19T00:54:59Z) - iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use [56.31110409360567]
大規模な言語モデルを外部ツールで拡張することは、その機能を強化するための有望なアプローチである。
その結果, 合成データの増加に伴い, トレーニングは著しく低下することがわかった。
我々は,この制限を緩和するために,反復的に強化された微調整戦略を提案する。
論文 参考訳(メタデータ) (2025-01-15T04:52:34Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
大規模言語モデルの内部構造と操作機構を理論的に解析する。
我々は、適応最適化アルゴリズム(AdamWなど)、大規模並列計算技術、混合精度訓練戦略の寄与を評価した。
論文 参考訳(メタデータ) (2024-05-20T00:10:00Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
この論文は、高速な実行と効率的なデータ利用のためのアルゴリズムをいくつか探求している。
一般化と分散性を向上する様々なデータ拡張を組み込んだ学習アルゴリズムに着目する。
具体的には、第4章では、データ拡張整合正則化のための複雑性分析のサンプルを提示する。
論文 参考訳(メタデータ) (2023-10-03T02:01:39Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
深層ニューラルネットワークを用いたパラメータ最適化における多目的最適化手法の有効性について検討する。
これら2つの手法を組み合わせて、複数のアプリケーションにおける予測と分析の生成に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-17T07:48:54Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。