論文の概要: DriveLiDAR4D: Sequential and Controllable LiDAR Scene Generation for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2511.13309v1
- Date: Mon, 17 Nov 2025 12:43:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:25.208833
- Title: DriveLiDAR4D: Sequential and Controllable LiDAR Scene Generation for Autonomous Driving
- Title(参考訳): DriveLiDAR4D:自律運転のためのシークエンシャルかつ制御可能なLiDARシーン生成
- Authors: Kaiwen Cai, Xinze Liu, Xia Zhou, Hengtong Hu, Jie Xiang, Luyao Zhang, Xueyang Zhang, Kun Zhan, Yifei Zhan, Xianpeng Lang,
- Abstract要約: マルチモーダル条件と新しいシーケンシャルノイズ予測モデルLiDAR4DNetからなる新しいLiDAR生成パイプラインであるDriveLiDAR4Dを紹介する。
我々の知る限りでは、これはLiDARシーンの逐次的な生成とフルシーン操作機能に対処する最初の試みである。
- 参考スコア(独自算出の注目度): 13.676328761938947
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The generation of realistic LiDAR point clouds plays a crucial role in the development and evaluation of autonomous driving systems. Although recent methods for 3D LiDAR point cloud generation have shown significant improvements, they still face notable limitations, including the lack of sequential generation capabilities and the inability to produce accurately positioned foreground objects and realistic backgrounds. These shortcomings hinder their practical applicability. In this paper, we introduce DriveLiDAR4D, a novel LiDAR generation pipeline consisting of multimodal conditions and a novel sequential noise prediction model LiDAR4DNet, capable of producing temporally consistent LiDAR scenes with highly controllable foreground objects and realistic backgrounds. To the best of our knowledge, this is the first work to address the sequential generation of LiDAR scenes with full scene manipulation capability in an end-to-end manner. We evaluated DriveLiDAR4D on the nuScenes and KITTI datasets, where we achieved an FRD score of 743.13 and an FVD score of 16.96 on the nuScenes dataset, surpassing the current state-of-the-art (SOTA) method, UniScene, with an performance boost of 37.2% in FRD and 24.1% in FVD, respectively.
- Abstract(参考訳): 現実的なLiDAR点雲の生成は、自律運転システムの開発と評価において重要な役割を果たす。
最近の3D LiDARポイントクラウド生成の手法は大幅に改善されているが、シーケンシャルな生成能力の欠如や、正確な位置決めされたフォアグラウンドオブジェクトや現実的な背景の生成能力の欠如など、注目すべき制限に直面している。
これらの欠点は実用性を妨げている。
本稿では,マルチモーダル条件からなる新しいLiDAR生成パイプラインであるDriveLiDAR4Dと,高制御可能なフォアグラウンドオブジェクトと現実的背景を持つ時間的に一貫したLiDARシーンを生成可能な新しい逐次ノイズ予測モデルLiDAR4DNetを紹介する。
我々の知る限りでは、これは、エンド・ツー・エンドでシーン操作機能を備えた連続的なLiDARシーンに対処する最初の試みである。
DriveLiDAR4D を nuScenes および KITTI データセット上で評価し,FRD スコア 743.13 と FVD スコア 16.96 を nuScenes データセット上で達成した。
関連論文リスト
- Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method [54.461213497603154]
作業中心の手法は、最近、フレームとモダリティをまたいだ一貫した条件付けを提供することで、最先端の結果を得た。
Nuplan-Occは、広く使われているNuplanベンチマークから構築された、これまでで最大の占有率データセットである。
高品質な占有、多視点ビデオ、LiDAR点雲を共同で合成する統合フレームワークを開発した。
論文 参考訳(メタデータ) (2025-10-27T03:52:45Z) - LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction [6.428928591765432]
Gaussian Splatting (GS)は、シーンの3Dガウス表現を明示してリアルタイムレンダリングを容易にする。
GSは暗黙のニューラルレイディアンスフィールド(NeRF)よりも高速な処理と直感的なシーン編集を提供する
動的シーン合成と編集のための新しいGS法を提案し,LiDARの監督とLiDARレンダリングのサポートを通じてシーン再構成を改善した。
論文 参考訳(メタデータ) (2024-12-19T22:59:55Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [53.58528891081709]
都市景観におけるLiDARスキャンをリアルタイムかつ高忠実に再現するLiDAR-GSを提案する。
この手法は,公開可能な大規模シーンデータセットのレンダリングフレームレートと品質の両面において,最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - UltraLiDAR: Learning Compact Representations for LiDAR Completion and
Generation [51.443788294845845]
我々は、シーンレベルのLiDAR補完、LiDAR生成、LiDAR操作のためのデータ駆動フレームワークであるUltraLiDARを提案する。
スパース点雲の表現を高密度点雲の表現に合わせることで、スパース点雲を密度化できることが示される。
個別のコードブック上で事前学習を行うことで、多種多様な現実的なLiDARポイントクラウドを自動走行のために生成できます。
論文 参考訳(メタデータ) (2023-11-02T17:57:03Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
3D LiDARデータの生成モデリングは、自律移動ロボットに有望な応用をもたらす新たな課題である。
我々は,多種多様かつ高忠実な3Dシーンポイント雲を生成可能な,LiDARデータのための新しい生成モデルR2DMを提案する。
本手法は拡散確率モデル (DDPM) を用いて構築され, 生成モデルフレームワークにおいて顕著な結果が得られた。
論文 参考訳(メタデータ) (2023-09-17T12:26:57Z) - NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance
Fields [20.887421720818892]
実世界の情報を利用してリアルなLIDAR点雲を生成する新しいLiDARシミュレーション手法であるNeRF-LIDARを提案する。
我々は,生成したLiDAR点雲上で異なる3次元セグメンテーションモデルをトレーニングすることにより,NeRF-LiDARの有効性を検証する。
論文 参考訳(メタデータ) (2023-04-28T12:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。