論文の概要: Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
- arxiv url: http://arxiv.org/abs/2511.13339v1
- Date: Mon, 17 Nov 2025 13:09:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:25.221647
- Title: Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
- Title(参考訳): 球根モデルによる岩盤不連続の統計的高精度・ロバストな生成予測
- Authors: Han Meng, Gang Mei, Hong Tian, Nengxiong Xu, Jianbing Peng,
- Abstract要約: 本稿では,岩盤不連続性の統計的に正確な生成予測のための簡易かつ頑健な手法を提案する。
提案手法は, 限られた不連続範囲内で, 基礎となる複雑な分布パターンを効果的に捉えることができる。
この研究は、岩盤の質量構造を定量的に評価し、より安全で信頼性の高いデータ駆動地形設計をサポートする。
- 参考スコア(独自算出の注目度): 8.016438614208463
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rock discontinuities critically govern the mechanical behavior and stability of rock masses. Their internal distributions remain largely unobservable and are typically inferred from surface-exposed discontinuities using generative prediction approaches. However, surface-exposed observations are inherently sparse, and existing generative prediction approaches either fail to capture the underlying complex distribution patterns or lack robustness under data-sparse conditions. Here, we proposed a simple yet robust approach for statistically accurate generative prediction of rock discontinuities by utilizing a tabular foundation model. By leveraging the powerful sample learning capability of the foundation model specifically designed for small data, our approach can effectively capture the underlying complex distribution patterns within limited measured discontinuities. Comparative experiments on ten datasets with diverse scales and distribution patterns of discontinuities demonstrate superior accuracy and robustness over conventional statistical models and deep generative approaches. This work advances quantitative characterization of rock mass structures, supporting safer and more reliable data-driven geotechnical design.
- Abstract(参考訳): 岩石の不連続性は、岩石塊の力学的挙動と安定性を決定的に制御する。
内部分布はほとんど観測不可能であり、典型的には生成予測手法を用いて表面暴露された不連続性から推定される。
しかし、表面露光観測は本質的に疎らであり、既存の生成予測手法は、基礎となる複雑な分布パターンを捉えなかったり、データスパース条件下での堅牢性を欠いていたりしている。
そこで我々は,表層基礎モデルを用いて,岩盤の不連続性を統計的に高精度に予測するための簡易かつ堅牢なアプローチを提案した。
提案手法は,小規模データに特化して設計された基礎モデルの強力なサンプル学習能力を活用することで,基礎となる複雑な分布パターンを限られた不連続範囲内で効果的に捉えることができる。
多様なスケールと不連続性の分布パターンを持つ10個のデータセットの比較実験は、従来の統計モデルや深層生成手法よりも精度と堅牢性が高いことを示した。
この研究は、岩盤の質量構造を定量的に評価し、より安全で信頼性の高いデータ駆動地形設計をサポートする。
関連論文リスト
- Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
C$2$TSDという条件拡散フレームワークを導入する。
実世界の3つのデータセットに対する我々の実験は、最先端のベースラインと比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2024-02-18T11:59:04Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks [0.0]
GAN(Generative Adversarial Networks)は、テキストや画像生成などの分野において大きな可能性を秘めている。
ここでは、格子上の原型過程に適用することにより、このアプローチを定量的に検証する。
重要なことに、ノイズにもかかわらずモデルの離散性は維持される。
論文 参考訳(メタデータ) (2023-05-25T10:41:02Z) - Assessment of Spatio-Temporal Predictors in the Presence of Missing and Heterogeneous Data [23.280400290071732]
ディープラーニングアプローチは、複雑さとスケールの増大にもかかわらず、現代的なデータのモデリングにおいて、卓越した予測性能を達成する。
予測モデルの品質を評価することは、従来の統計的仮定がもはや持たないため、より困難になる。
本稿では,時間的・時間的予測型ニューラルモデルの最適性を評価するための残差分析フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-03T12:55:08Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
この論文は、因果効果の推定、因果構造学習、および分布的に堅牢な予測方法に関する研究領域に寄与する。
本稿では,データ依存平均二乗予測誤差正規化を用いた機器変数設定における線形・非線形因果関係推定器について述べる。
本稿では,介入誘起分布に関する分布ロバスト性に関する一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-04T13:12:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。