論文の概要: Measurement-Constrained Sampling for Text-Prompted Blind Face Restoration
- arxiv url: http://arxiv.org/abs/2511.14213v1
- Date: Tue, 18 Nov 2025 07:44:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 16:23:52.990891
- Title: Measurement-Constrained Sampling for Text-Prompted Blind Face Restoration
- Title(参考訳): テキストプロンプトブラインド顔復元のための計測制約サンプリング
- Authors: Wenjie Li, Yulun Zhang, Guangwei Gao, Heng Guo, Zhanyu Ma,
- Abstract要約: ブラインドフェース修復(BFR)は、極低品質(LQ)入力下での複数の高品質(HQ)再構築に対応できる。
本研究では,異なるテキストプロンプトを条件とした多種多様なLQ顔再構成を可能にするMCS手法を提案する。
- 参考スコア(独自算出の注目度): 60.45423400845294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blind face restoration (BFR) may correspond to multiple plausible high-quality (HQ) reconstructions under extremely low-quality (LQ) inputs. However, existing methods typically produce deterministic results, struggling to capture this one-to-many nature. In this paper, we propose a Measurement-Constrained Sampling (MCS) approach that enables diverse LQ face reconstructions conditioned on different textual prompts. Specifically, we formulate BFR as a measurement-constrained generative task by constructing an inverse problem through controlled degradations of coarse restorations, which allows posterior-guided sampling within text-to-image diffusion. Measurement constraints include both Forward Measurement, which ensures results align with input structures, and Reverse Measurement, which produces projection spaces, ensuring that the solution can align with various prompts. Experiments show that our MCS can generate prompt-aligned results and outperforms existing BFR methods. Codes will be released after acceptance.
- Abstract(参考訳): ブラインドフェース修復(BFR)は、極低品質(LQ)入力下での複数の高品質(HQ)再構築に対応できる。
しかし、既存の手法は一般に決定論的な結果をもたらし、この1対多の性質をつかむのに苦労する。
本稿では,異なるテキストプロンプトを条件とした多種多様なLQ顔再構成を可能にするMCS手法を提案する。
具体的には、粗い復元の制御による逆問題を構築することで、BFRを計測制約付き生成タスクとして定式化し、テキストから画像への拡散において後部誘導サンプリングを可能にする。
測定制約には、入力構造と結果が一致することを保証するフォワード計測と、プロジェクション空間を生成するリバース計測の両方が含まれており、ソリューションが様々なプロンプトと一致できることを保証する。
実験の結果, MCSは既存のBFR法よりも優れた結果が得られることがわかった。
コードは受理後にリリースされる。
関連論文リスト
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
断片的なガイダンススキームを用いて,逆問題を解決するための新しい拡散型フレームワークが導入された。
提案手法は問題に依存しず,様々な逆問題に容易に適応できる。
このフレームワークは, (4時間), (8時間) の超分解能タスクに対して, (23%), (24%) および (24%) の無作為マスクを塗布する場合の (25%) の推論時間を短縮する。
論文 参考訳(メタデータ) (2025-07-22T19:35:14Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Smplingは、逆問題における効率的な後方サンプリングのための新しい変分推論手法である。
本手法は,拡散モデルにより暗黙的に定義された変動分布と後続分布とのばらつきを最小限に抑えるために条件付き流れモデルを訓練する。
既存の手法とは異なり、我々のアプローチは教師なしであり、ペア化されたトレーニングデータを必要としておらず、ユークリッドと非ユークリッドの両方のドメインに適用できる。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - Prototype Clustered Diffusion Models for Versatile Inverse Problems [11.55838697574475]
測定に基づく確率は、逆の確率的図形方向を通した復元に基づく確率で再現可能であることを示す。
提案手法は, サンプル品質を考慮に入れた逆問題に対処し, 精度の高い劣化制御を実現する。
論文 参考訳(メタデータ) (2024-07-13T04:24:53Z) - BFRFormer: Transformer-based generator for Real-World Blind Face
Restoration [37.77996097891398]
本稿では,トランスフォーマーをベースとしたブラインドフェイス復元手法BFRFormerを提案する。
提案手法は, 合成データセットと実世界の4つのデータセットにおいて, 最先端の手法より優れる。
論文 参考訳(メタデータ) (2024-02-29T02:31:54Z) - Inverse-like Antagonistic Scene Text Spotting via Reading-Order
Estimation and Dynamic Sampling [26.420235903805782]
我々は、IATSと呼ばれる、エンドツーエンドのトレーニング可能な逆対角テキストスポッティングフレームワークを提案する。
具体的には、初期テキスト境界から読み順情報を抽出する革新的な読み順推定モジュール(REM)を提案する。
本手法は不規則なテキストスポッティングと逆テキストスポッティングの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-08T02:47:47Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Adaptive Shrink-Mask for Text Detection [91.34459257409104]
既存のリアルタイムテキスト検出器は、ストリップマスクによってテキストの輪郭を直接再構築する。
予測された収縮マスクへの依存は不安定な検出結果をもたらす。
スーパーピクセルウィンドウ (SPW) はネットワークを監督するように設計されている。
論文 参考訳(メタデータ) (2021-11-18T07:38:57Z) - Sampling possible reconstructions of undersampled acquisitions in MR
imaging [9.75702493778194]
MR中のk-空間のアンサンプは時間を節約するが、結果として不適切な逆転問題が発生し、可能な限り無限の画像が生成される。
伝統的に、これは、選択された正規化や事前に従って、このソリューションセットから1つの「ベスト」イメージを検索することで、再構成問題として取り組まれる。
そこで本研究では,逆変換プロセスにおける不確実性を捉えるために,取得モデルと選択した条件下で可能な複数の画像を返却する手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T18:20:06Z) - Conditional Sampling with Monotone GANs: from Generative Models to
Likelihood-Free Inference [4.913013713982677]
ブロック三角トランスポートマップを用いた確率測定の条件付きサンプリングのための新しいフレームワークを提案する。
バナッハ空間におけるブロック三角輸送の理論的基礎を開発する。
次に, 単調生成逆数ネットワークと呼ばれる計算手法を導入し, 適切なブロック三角形写像を学習する。
論文 参考訳(メタデータ) (2020-06-11T19:15:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。