論文の概要: Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2511.14981v1
- Date: Tue, 18 Nov 2025 23:50:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.568924
- Title: Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation
- Title(参考訳): ログベースの損失は特徴知識蒸留の有効性を制限する
- Authors: Nicholas Cooper, Lijun Chen, Sailesh Dwivedy, Danna Gurari,
- Abstract要約: 知識蒸留(KD)法は、パラメータ重大教師モデルの知識を軽量の学生モデルに伝達することができる。
特徴に基づく損失のみを用いて,学生の背骨を訓練するための特徴的KDフレームワークを提案する。
我々は,KD法が最先端性能を実現し,標準手法に比べて最大15%の精度向上を実現していることを示す。
- 参考スコア(独自算出の注目度): 13.970649308150895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher model to a light-weight student model. The status quo for feature KD methods is to utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer features (i.e., latent representations). Unlike previous approaches, we propose a feature KD framework for training the student's backbone using feature-based losses exclusively (i.e., without logit-based losses such as cross entropy). Leveraging recent discoveries about the geometry of latent representations, we introduce a knowledge quality metric for identifying which teacher layers provide the most effective knowledge for distillation. Experiments on three image classification datasets with four diverse student-teacher pairs, spanning convolutional neural networks and vision transformers, demonstrate our KD method achieves state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard approaches. We publically share our code to facilitate future work at https://github.com/Thegolfingocto/KD_wo_CE.
- Abstract(参考訳): 知識蒸留(KD)法は、パラメータ重大教師モデルの知識を軽量の学生モデルに伝達することができる。
機能KDメソッドのステータスクオは、ロジット(ソフトマックス前のスコア)と中間層機能(潜時表現)に基づく損失関数を利用することである。
従来の手法とは違って,機能に基づく損失(クロスエントロピーのようなロジットに基づく損失を伴わない)のみを用いて,学生の背骨を訓練するための特徴的KDフレームワークを提案する。
潜在表現の幾何学に関する最近の発見を活用し,どの教師層が蒸留に最も効果的な知識を提供するかを特定するための知識品質指標を導入する。
畳み込みニューラルネットワークとビジョントランスフォーマーにまたがる4つの多様な学生と教師のペアによる3つの画像分類データセットの実験では、我々のKD手法が最先端のパフォーマンスを実現し、標準アプローチよりも最大15%の精度でトップ1の精度向上を実現していることを実証している。
当社のコードは、https://github.com/Thegolfingocto/KD_wo_CEで公開しています。
関連論文リスト
- Improving Knowledge Distillation via Regularizing Feature Norm and
Direction [16.98806338782858]
知識蒸留(KD)は、大きな訓練されたモデル(例えば教師)を利用して、同じタスクのために同じデータセット上で小さな学生モデルを訓練する。
教師の特徴を知識として扱うこと、知識蒸留訓練の学生は、その特徴を教師の特徴と整合させることによって、例えば、ロジット間のKL偏差を最小化し、中間特徴間のL2距離を最小化する。
教師に対する生徒の特徴の整合性の向上は教師の知識をよりよく蒸留すると考えるのは自然なことだが、単にこの整合性を強制することは生徒のパフォーマンスに直接寄与しない。
論文 参考訳(メタデータ) (2023-05-26T15:05:19Z) - Knowledge Diffusion for Distillation [53.908314960324915]
知識蒸留(KD)における教師と学生の表現ギャップ
これらの手法の本質は、ノイズ情報を捨て、その特徴の貴重な情報を蒸留することである。
DiffKDと呼ばれる新しいKD手法を提案し、拡散モデルを用いて特徴を明示的に識別し一致させる。
論文 参考訳(メタデータ) (2023-05-25T04:49:34Z) - Gradient-Guided Knowledge Distillation for Object Detectors [3.236217153362305]
グラディエント誘導型知識蒸留(GKD)という,物体検出における知識蒸留の新しい手法を提案する。
我々のGKDは勾配情報を用いて、検出損失に大きな影響を及ぼす特徴を識別し、割り当て、生徒が教師から最も関連性の高い特徴を学習できるようにする。
KITTIとCOCO-Trafficデータセットの実験は、対象検出のための知識蒸留における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-03-07T21:09:09Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
本稿では, アクティベーションマップの2次元周波数変換を転送前に提案し, 解析する。
この戦略は、シーン認識などのタスクにおける知識伝達可能性を高める。
我々は、この論文で使われているトレーニングおよび評価フレームワークを、http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognitionで公開しています。
論文 参考訳(メタデータ) (2022-05-04T11:05:18Z) - Knowledge Distillation with Deep Supervision [6.8080936803807734]
本研究では,教師モデルのクラス予測と特徴マップをフル活用し,浅層学習モデルの指導を監督する深層学習知識蒸留(DSKD)を提案する。
DSKDでは、各浅い層の学習過程を適応的にバランスさせ、学生のパフォーマンスをさらに向上するため、損失に基づく重み付け戦略が開発されている。
論文 参考訳(メタデータ) (2022-02-16T03:58:21Z) - EvDistill: Asynchronous Events to End-task Learning via Bidirectional
Reconstruction-guided Cross-modal Knowledge Distillation [61.33010904301476]
イベントカメラは画素ごとの強度変化を感知し、ダイナミックレンジが高く、動きのぼやけが少ない非同期イベントストリームを生成する。
本稿では,bfEvDistillと呼ばれる新しい手法を提案し,未ラベルのイベントデータから学生ネットワークを学習する。
EvDistillは、イベントとAPSフレームのみのKDよりもはるかに優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2021-11-24T08:48:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。