論文の概要: Can MLLMs Detect Phishing? A Comprehensive Security Benchmark Suite Focusing on Dynamic Threats and Multimodal Evaluation in Academic Environments
- arxiv url: http://arxiv.org/abs/2511.15165v1
- Date: Wed, 19 Nov 2025 06:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.662632
- Title: Can MLLMs Detect Phishing? A Comprehensive Security Benchmark Suite Focusing on Dynamic Threats and Multimodal Evaluation in Academic Environments
- Title(参考訳): MLLMはフィッシングを検知できるか? 動的脅威と学術環境におけるマルチモーダル評価に着目した総合的セキュリティベンチマークスイート
- Authors: Jingzhuo Zhou,
- Abstract要約: 学術機関や研究者は、動的、多言語、文脈に依存した脅威に直面し、高い価値の目標である。
既存のセキュリティベンチマークは、特定の学術的背景情報を含まないデータセットに大きく依存している。
本稿では,学術的な環境下での動的フィッシング攻撃に対するMLLM防御能力を体系的に評価するための統一的方法論フレームワークとベンチマークスイートであるAdapT-Benchを提案する。
- 参考スコア(独自算出の注目度): 0.12691047660244334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid proliferation of Multimodal Large Language Models (MLLMs) has introduced unprecedented security challenges, particularly in phishing detection within academic environments. Academic institutions and researchers are high-value targets, facing dynamic, multilingual, and context-dependent threats that leverage research backgrounds, academic collaborations, and personal information to craft highly tailored attacks. Existing security benchmarks largely rely on datasets that do not incorporate specific academic background information, making them inadequate for capturing the evolving attack patterns and human-centric vulnerability factors specific to academia. To address this gap, we present AdapT-Bench, a unified methodological framework and benchmark suite for systematically evaluating MLLM defense capabilities against dynamic phishing attacks in academic settings.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の急速な普及は、特に学術環境におけるフィッシング検出において、前例のないセキュリティ問題を引き起こしている。
学術機関や研究者は、研究の背景、学術的協力、個人情報を活用して高度に調整された攻撃を行う、動的、多言語的、文脈に依存した脅威に直面している。
既存のセキュリティベンチマークは、特定の学術的背景情報を含まないデータセットに大きく依存しているため、進化する攻撃パターンや、アカデミック固有の人間中心の脆弱性要素をキャプチャするには不十分である。
このギャップに対処するため,学術的な環境下での動的フィッシング攻撃に対するMLLM防御能力を体系的に評価するための統一的な方法論フレームワークとベンチマークスイートであるAdapT-Benchを提案する。
関連論文リスト
- A Systematic Survey of Model Extraction Attacks and Defenses: State-of-the-Art and Perspectives [65.3369988566853]
近年の研究では、敵が対象モデルの機能を複製できることが示されている。
モデル抽出攻撃は知的財産権、プライバシー、システムのセキュリティに脅威をもたらす。
本稿では,攻撃機構,防衛手法,計算環境に応じてMEAを分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2025-08-20T19:49:59Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
モデル抽出攻撃は、デプロイされた言語モデルに重大なセキュリティ脅威をもたらす。
この調査は、抽出攻撃と防御攻撃の包括的分類、機能抽出への攻撃の分類、データ抽出の訓練、およびプロンプトターゲット攻撃を提供する。
モデル保護,データプライバシ保護,迅速なターゲット戦略に編成された防御機構について検討し,その効果を異なる展開シナリオで評価する。
論文 参考訳(メタデータ) (2025-06-26T22:02:01Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
マルチモーダル・ユニバーサル・ジェイルブレイク・アタック・フレームワークを提案する。
LLaVA,Yi-VL,MiniGPT4,MiniGPT-v2,InstructBLIPなどのMLLMの望ましくないコンテキスト生成を評価する。
本研究は,MLLMにおける堅牢な安全対策の必要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2025-06-02T04:33:56Z) - Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
我々は、MLLMから特定のマルチモーダル知識を削除する方法を評価するために、マルチモーダル・アンラーニング・ベンチマークUnLOK-VQAとアタック・アンド・ディフェンス・フレームワークを導入する。
その結果,マルチモーダル攻撃はテキストや画像のみの攻撃よりも優れており,最も効果的な防御は内部モデル状態から解答情報を除去することを示した。
論文 参考訳(メタデータ) (2025-05-01T01:54:00Z) - Survey of Adversarial Robustness in Multimodal Large Language Models [17.926240920647892]
MLLM(Multimodal Large Language Models)は、人工知能において例外的な性能を示す。
現実世界のアプリケーションへのデプロイは、敵の脆弱性に対する重大な懸念を引き起こす。
本稿では,MLLMの対角的ロバスト性について述べる。
論文 参考訳(メタデータ) (2025-03-18T06:54:59Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [8.345554966569479]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
大規模言語モデル(LLM)は、高度な自然言語処理機能を提供することによって、様々なアプリケーションに革命をもたらした。
本稿では,LSMを利用したアプリケーションに適した脅威モデリングとリスク分析について検討する。
論文 参考訳(メタデータ) (2024-06-16T16:43:58Z) - Unique Security and Privacy Threats of Large Language Models: A Comprehensive Survey [63.4581186135101]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げた。
プライバシーとセキュリティの問題は、そのライフサイクルを通じて明らかになっている。
この調査は、潜在的な対策の概要と分析である。
論文 参考訳(メタデータ) (2024-06-12T07:55:32Z) - Survey of Vulnerabilities in Large Language Models Revealed by
Adversarial Attacks [5.860289498416911]
大規模言語モデル(LLM)はアーキテクチャと能力において急速に進歩しています。
複雑なシステムに深く統合されるにつれて、セキュリティ特性を精査する緊急性が高まっている。
本稿では,LSMに対する対人攻撃の新たな学際的分野について調査する。
論文 参考訳(メタデータ) (2023-10-16T21:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。