論文の概要: Multi-Order Matching Network for Alignment-Free Depth Super-Resolution
- arxiv url: http://arxiv.org/abs/2511.16361v1
- Date: Thu, 20 Nov 2025 13:44:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.650871
- Title: Multi-Order Matching Network for Alignment-Free Depth Super-Resolution
- Title(参考訳): 配向自由度超解法のための多次マッチングネットワーク
- Authors: Zhengxue Wang, Zhiqiang Yan, Yuan Wu, Guangwei Gao, Xiang Li, Jian Yang,
- Abstract要約: 本稿では,不整合RGBから最も関連性の高い情報を適応的に検索し,選択する新しいアライメントフリーフレームワークを提案する。
実験により、MOMNetは最先端のパフォーマンスを達成し、優れた堅牢性を示すことが示された。
- 参考スコア(独自算出の注目度): 29.19515140577684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent guided depth super-resolution methods are premised on the assumption of strictly spatial alignment between depth and RGB, achieving high-quality depth reconstruction. However, in real-world scenarios, the acquisition of strictly aligned RGB-D is hindered by inherent hardware limitations (e.g., physically separate RGB-D sensors) and unavoidable calibration drift induced by mechanical vibrations or temperature variations. Consequently, existing approaches often suffer inevitable performance degradation when applied to misaligned real-world scenes. In this paper, we propose the Multi-Order Matching Network (MOMNet), a novel alignment-free framework that adaptively retrieves and selects the most relevant information from misaligned RGB. Specifically, our method begins with a multi-order matching mechanism, which jointly performs zero-order, first-order, and second-order matching to comprehensively identify RGB information consistent with depth across multi-order feature spaces. To effectively integrate the retrieved RGB and depth, we further introduce a multi-order aggregation composed of multiple structure detectors. This strategy uses multi-order priors as prompts to facilitate the selective feature transfer from RGB to depth. Extensive experiments demonstrate that MOMNet achieves state-of-the-art performance and exhibits outstanding robustness.
- Abstract(参考訳): 近年の誘導深度超解法は, 深度とRGBの厳密な空間的アライメントを前提として, 高品質の深度再構成を実現している。
しかし、現実のシナリオでは、厳密に整列されたRGB-Dの取得は、固有のハードウェア制限(例えば物理的に分離されたRGB-Dセンサ)と、機械振動や温度変化によって誘導される避けられないキャリブレーションドリフトによって妨げられる。
その結果、既存のアプローチは、現実のシーンに不整合を適用すると、必然的にパフォーマンスが低下する。
本稿では,アライメントのない新しいフレームワークであるMulti-Order Matching Network (MOMNet)を提案する。
具体的には,複数階特徴空間の奥行きに整合したRGB情報を包括的に識別するために,0階,1階,2階のマッチングを共同で行うマルチオーダーマッチング機構から始める。
さらに,得られたRGBと深度を効果的に統合するために,複数の構造検出器からなる多階アグリゲーションを導入する。
この戦略では、RGBからdeepへの選択的な機能転送を容易にするプロンプトとして、マルチオーダーの事前を使用する。
大規模な実験により、MOMNetは最先端のパフォーマンスを達成し、優れた堅牢性を示すことが示された。
関連論文リスト
- Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - A Multi-modal Approach to Single-modal Visual Place Classification [2.580765958706854]
RGBと深度(D)を組み合わせたマルチセンサー融合アプローチが近年人気を集めている。
単一モードRGB画像分類タスクを擬似多モードRGB-D分類問題として再構成する。
これら2つのモダリティを適切に処理し、融合し、分類するための、実践的で完全に自己管理されたフレームワークについて説明する。
論文 参考訳(メタデータ) (2023-05-10T14:04:21Z) - Robust RGB-D Fusion for Saliency Detection [13.705088021517568]
本稿では, 層状および三重項空間, 注意機構の利点を生かしたRGB-D融合法を提案する。
5つのベンチマーク・データセットを用いた実験により,提案手法は最先端の核融合法よりも一貫した性能を示した。
論文 参考訳(メタデータ) (2022-08-02T21:23:00Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
本稿では,RGB-D SODのためのクロスモダリティ離散相互作用ネットワーク(CDINet)を提案する。
2つのコンポーネントは、効果的な相互モダリティ相互作用を実装するように設計されている。
我々のネットワークは、定量的にも質的にも15ドルの最先端の手法より優れています。
論文 参考訳(メタデータ) (2021-08-04T11:24:42Z) - Deep RGB-D Saliency Detection with Depth-Sensitive Attention and
Automatic Multi-Modal Fusion [15.033234579900657]
RGB-Dサラエントオブジェクト検出(SOD)は通常、2つのモダリティ、すなわちRGBと深さの分類または回帰の問題として定式化される。
本稿では,salient objectsの奥行き方向幾何学的前置を用いた深さ感応型rgb特徴モデリング手法を提案する。
7つの標準ベンチマークに関する実験は、最先端技術に対する提案手法の有効性を示している。
論文 参考訳(メタデータ) (2021-03-22T13:28:45Z) - Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient
Object Detection [73.31632581915201]
深部特徴抽出に先立って,RGBとD(深部)を融合する新たなデータレベル組換え手法を提案する。
新たに設計された3重ストリームネットワークをこれらの新しい定式化データ上に適用し,RGBとDのチャネルワイドな相補的融合状態を実現する。
論文 参考訳(メタデータ) (2020-08-07T10:13:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
我々は,RGB-D SODの深度チャネルとRGB-D SODの包括的相互作用を促進するために,新しいクロスモーダルウェイトリング(CMW)戦略を提案する。
具体的には、CMW-L、CMW-M、CMW-Hという3つのRGB-depth相互作用モジュールが、それぞれ低レベル、中級、高レベルのクロスモーダル情報融合を扱うように開発されている。
CMWNetは、7つの人気のあるベンチマークで15の最先端のRGB-D SODメソッドを上回っている。
論文 参考訳(メタデータ) (2020-07-09T16:01:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。