論文の概要: Improved error correction with leakage reduction units built into qubit measurement in a superconducting quantum processor
- arxiv url: http://arxiv.org/abs/2511.17460v1
- Date: Fri, 21 Nov 2025 18:02:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-24 18:08:19.157465
- Title: Improved error correction with leakage reduction units built into qubit measurement in a superconducting quantum processor
- Title(参考訳): 超伝導量子プロセッサにおける量子ビット計測に組み込んだリーク低減ユニットによる誤り訂正の改善
- Authors: Yuejie Xin, Sean L. M. van der Meer, Marc Serra-Peralta, Tim H. F. Vroomans, Matvey Finkel, Hendrik M. Veen, Mark W. Beekman, Leonardo DiCarlo,
- Abstract要約: 非計算状態への漏洩は時間と空間の相関誤差の源である。
本稿では,トランスモン測定と同時に動作する高忠実度漏洩低減ユニット(LRU)について実験的に紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leakage to non-computational states is a source of correlated errors in both time and space that limits the effectiveness of quantum error correction (QEC) with superconducting circuits. We present and experimentally demonstrate a high-fidelity, leakage reduction unit (LRU) operating concurrently with transmon measurement without incurring time overhead. Adapted from double-drive reset of population (DDROP), the protocol utilizes simultaneous drives on the transmon and its readout resonator, leveraging the dispersive shift to create a directional process that returns the transmon to the computational subspace. The LRU achieves a 98.4% leakage removal fraction without compromising the computational-state assignment fidelity (99.2%). We combine LRU-enhanced measurement and neural-network decoding to successfully suppress logical error rates in both memory and stability QEC experiments without any post-selection.
- Abstract(参考訳): 非計算状態への漏洩は、量子エラー補正(QEC)と超伝導回路の有効性を制限する時間と空間の相関エラーの源である。
本稿では,時間オーバーヘッドを発生させることなく,トランスモン測定と同時動作する高忠実・リーク低減ユニット(LRU)について実験的に紹介する。
DDROP(Double-drive Reset of population)に適応して、このプロトコルはトランスモンとリードアウト共振器の同時駆動を利用し、分散シフトを利用してトランスモンを計算部分空間に戻す方向プロセスを生成する。
LRUは、計算状態の割り当て忠実度(99.2%)を損なうことなく、98.4%のリーク除去率を達成する。
我々は,LRU強化測定とニューラルネットデコーディングを組み合わせることで,メモリおよび安定QEC実験における論理的誤り率の抑制に成功している。
関連論文リスト
- Above 99.9% Fidelity Single-Qubit Gates, Two-Qubit Gates, and Readout in a Single Superconducting Quantum Device [58.154405222706146]
2つのトランスモンキュービットがチューナブルカプラを介して結合された超伝導回路におけるキュービットカップラー結合強度のチューニングは、高忠実度単一および2キュービットゲートを可能にする。
我々は、平均で40hのCZゲート忠実度99.93%、同時シングルキュービットゲート忠実度99.98%、単一デバイスで99.94%以上の読み出し忠実度を達成する。
論文 参考訳(メタデータ) (2025-08-22T14:49:47Z) - Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits [18.641408987868154]
非計算状態へのリークは超伝導回路を含む量子システムにおいて一般的な問題である。
大規模超伝導量子プロセッサにおいて広く採用されているチューナブルカプラを用いた漏れ低減手法を提案し,実証する。
さらに、高い効率(98.1%)と計算サブスペース(0.58%)でのエラー率の低いキュービットレベルへのリークを低減し、QECサイクル中の時間関連エラーを抑制する。
論文 参考訳(メタデータ) (2024-03-24T13:46:41Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
超伝導量子ビットは、大帯域読み出し共振器に結合される。
我々は、100 ns 統合時間で 0.25,% の、最先端の2状態読み取りエラーを示す。
提案した結果により,新たなアルゴリズムやプロトコルの性能がさらに向上することが期待されている。
論文 参考訳(メタデータ) (2023-07-15T10:30:10Z) - All-microwave leakage reduction units for quantum error correction with
superconducting transmon qubits [0.0]
量子回路を量子ビットとして使用する場合、計算状態からのリークを最小限にすることは困難である。
Battistelらによって提案された回路QEDアーキテクチャにおいて,トランスモンの量子ハードウエア効率,全マイクロ波リーク低減ユニット(LRU)を実現し,拡張する。
このLRUは、第2および第3の励起されたトランスモン状態の漏れを効果的に低減し、最大99%の有効率を220mathrmns$で、クォービット部分空間に最小限の影響を与える。
論文 参考訳(メタデータ) (2023-02-20T10:10:53Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
計算状態から高エネルギー状態への量子情報の漏洩は、量子誤り訂正(QEC)の追求における大きな課題である。
本稿では,Sycamore量子プロセッサ上で,各サイクルの全てのキュービットから漏れが除去される距離3曲面符号と距離21ビットフリップ符号の実行を実演する。
本報告では, 論理状態を符号化したデータキュービットにおける定常リーク集団の10倍の減少と, デバイス全体の平均リーク人口の1/10〜3ドルの減少を報告した。
論文 参考訳(メタデータ) (2022-11-09T07:54:35Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - A hardware-efficient leakage-reduction scheme for quantum error
correction with superconducting transmon qubits [1.6328866317851185]
量子ビット計算部分空間の外の漏れは量子エラー補正(QEC)に脅威をもたらす
本稿では,2つのリーク低減ユニット(LRU)を用いて,これらの問題をトランスモンベースサーフェスコードに対して緩和する手法を提案する。
これは論理的誤り率の大幅な低減につながることを示す。
論文 参考訳(メタデータ) (2021-02-16T18:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。