論文の概要: Comparative Analysis of Large Language Model Inference Serving Systems: A Performance Study of vLLM and HuggingFace TGI
- arxiv url: http://arxiv.org/abs/2511.17593v1
- Date: Mon, 17 Nov 2025 16:25:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 20:38:37.887827
- Title: Comparative Analysis of Large Language Model Inference Serving Systems: A Performance Study of vLLM and HuggingFace TGI
- Title(参考訳): 大規模言語モデル推論サービングシステムの比較分析:vLLMとHuggingFace TGIの性能検討
- Authors: Saicharan Kolluru,
- Abstract要約: 本稿では,vLLM と HuggingFace Text Generation Inference (TGI) の2つの著名なオープンソースLarge Language Models (LLMs) の総合的評価について述べる。
スループット性能,エンドツーエンドレイテンシ,GPUメモリ利用,LLaMA-2モデルを用いたスケーラビリティ特性など,複数次元にわたるシステムのベンチマークを行った。
実験の結果,新しいPagedAttention機構により,高速負荷下でのTGIよりも最大24倍のスループットを実現し,対話型単一ユーザシナリオのテールレイテンシが低くなることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of Large Language Models (LLMs) in production environments requires efficient inference serving systems that balance throughput, latency, and resource utilization. This paper presents a comprehensive empirical evaluation of two prominent open-source LLM serving frameworks: vLLM and HuggingFace Text Generation Inference (TGI). We benchmark these systems across multiple dimensions including throughput performance, end-to-end latency, GPU memory utilization, and scalability characteristics using LLaMA-2 models ranging from 7B to 70B parameters. Our experiments reveal that vLLM achieves up to 24x higher throughput than TGI under high-concurrency workloads through its novel PagedAttention mechanism, while TGI demonstrates lower tail latencies for interactive single-user scenarios. We provide detailed performance profiles for different deployment scenarios and offer practical recommendations for system selection based on workload characteristics. Our findings indicate that the choice between these frameworks should be guided by specific use-case requirements: vLLM excels in high-throughput batch processing scenarios, while TGI is better suited for latency-sensitive interactive applications with moderate concurrency.
- Abstract(参考訳): 大規模言語モデル(LLM)を本番環境にデプロイするには、スループット、レイテンシ、リソース利用のバランスをとる効率的な推論サービスシステムが必要である。
本稿では,オープンソースのLLMサービスフレームワークであるvLLMとHuggingFace Text Generation Inference(TGI)を総合的に評価する。
スループット性能,エンドツーエンドレイテンシ,GPUメモリ利用,LLaMA-2モデルを用いたスケーラビリティ特性など,複数次元にわたるシステムのベンチマークを行った。
実験の結果,新しいPagedAttention機構により,高速負荷下でのTGIよりも最大24倍のスループットを実現し,対話型単一ユーザシナリオのテールレイテンシが低くなることがわかった。
異なるデプロイメントシナリオに対して詳細なパフォーマンスプロファイルを提供し、ワークロード特性に基づいたシステム選択の実践的なレコメンデーションを提供する。
vLLMは高スループットのバッチ処理シナリオに優れており、TGIは適度な並行性を備えた遅延に敏感な対話型アプリケーションに適している。
関連論文リスト
- Rethinking Agentic Workflows: Evaluating Inference-Based Test-Time Scaling Strategies in Text2SQL Tasks [21.891522433628893]
大規模言語モデル(LLM)はText-to-(Text2)システムにますます力を入れている。
テストタイムのスケーリング戦略はLLMベースのソリューションでは有望だが、現実のアプリケーション、特に最新の推論モデルでは、その有効性は不確実である。
この作業は、Text2システムをデプロイする際の正確性、効率、複雑さの間の実践的なトレードオフに光を当てています。
論文 参考訳(メタデータ) (2025-10-13T01:29:54Z) - Leveraging Generative Models for Real-Time Query-Driven Text Summarization in Large-Scale Web Search [54.987957691350665]
クエリ駆動テキスト要約(QDTS)は、与えられたクエリに基づいてテキスト文書から簡潔で情報的な要約を生成することを目的としている。
従来の抽出的要約モデルは、主にランク付け候補の要約セグメントに基づいており、産業応用において支配的なアプローチとなっている。
産業Web検索におけるリアルタイムQDTSに対処するための生成モデルの適用を開拓するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-28T08:51:51Z) - Scalable Engine and the Performance of Different LLM Models in a SLURM based HPC architecture [3.746889836344766]
本研究は、SLURM(Simple Linux Utility for Resource Management)に基づく高性能コンピューティングアーキテクチャについて詳述する。
動的リソーススケジューリングとコンテナ化のシームレスな統合は、CPU、GPU、メモリをマルチノードクラスタで効率的に管理するために活用されている。
その結果,大規模HPCインフラストラクチャ上でのLLM推論は,より効率的で応答性が高く,耐故障性に優れた。
論文 参考訳(メタデータ) (2025-08-25T09:11:27Z) - Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition [95.54406667705999]
Pangu Embeddedは、Ascend Neural Processing Units (NPU) 上で開発された効率的なLarge Language Model (LLM) 推論器である。
既存の推論最適化 LLM でよく見られる計算コストと推論遅延の問題に対処する。
単一の統一モデルアーキテクチャ内で、迅速な応答と最先端の推論品質を提供する。
論文 参考訳(メタデータ) (2025-05-28T14:03:02Z) - GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments [1.0558515062670693]
現実世界のシナリオにおける大規模言語モデル(LLM)は依然として重要な課題である。
これらの課題は、しばしばメモリ使用率、レイテンシ、スループットの非効率につながる。
バッチレイテンシ、TTFT、デコードスループットといった主要なメトリクスに対して、予測エラーを9.9%から42.3%の精度で達成し、これらの問題に対処するフレームワークを開発する。
論文 参考訳(メタデータ) (2024-12-06T05:46:43Z) - The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines [6.381783966294295]
オープンソースの大規模言語モデル(LLM)により、開発者はプライバシやコンプライアンスといった側面をコントロールしながら、AIベースのソリューションを作成できる。
我々は、vLLMとHuggingFaceのパイプラインという2つの推論ライブラリを使用して、20LLMのパフォーマンス、特にスループット(時間単位毎に生成されるトークン)を分析します。
論文 参考訳(メタデータ) (2024-08-02T06:56:59Z) - Performance Tuning for GPU-Embedded Systems: Machine-Learning-based and
Analytical Model-driven Tuning Methodologies [0.0]
本研究は,分析モデル駆動型チューニング手法と機械学習(ML)に基づくチューニング手法を紹介する。
NVIDIA JetsonシステムにおけるBPLGライブラリの異なる並列プレフィックス実装のための2つのチューニング手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-10-24T22:09:03Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。