論文の概要: Research and Prototyping Study of an LLM-Based Chatbot for Electromagnetic Simulations
- arxiv url: http://arxiv.org/abs/2511.17680v1
- Date: Fri, 21 Nov 2025 08:26:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.358691
- Title: Research and Prototyping Study of an LLM-Based Chatbot for Electromagnetic Simulations
- Title(参考訳): 電磁シミュレーションのためのLCM型チャットボットの研究と試作
- Authors: Albert Piwonski, Mirsad Hadžiefendić,
- Abstract要約: この研究は、電磁シミュレーションモデルを構築するのに必要な時間を短縮するために、生成人工知能をどのように使用できるのかという問題に対処する。
様々な機能拡張を備えたシミュレーションモデルの自動生成が可能な,大規模言語モデルが提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work addresses the question of how generative artificial intelligence can be used to reduce the time required to set up electromagnetic simulation models. A chatbot based on a large language model is presented, enabling the automated generation of simulation models with various functional enhancements. A chatbot-driven workflow based on the large language model Google Gemini 2.0 Flash automatically generates and solves two-dimensional finite element eddy current models using Gmsh and GetDP. Python is used to coordinate and automate interactions between the workflow components. The study considers conductor geometries with circular cross-sections of variable position and number. Additionally, users can define custom post-processing routines and receive a concise summary of model information and simulation results. Each functional enhancement includes the corresponding architectural modifications and illustrative case studies.
- Abstract(参考訳): この研究は、電磁シミュレーションモデルを構築するのに必要な時間を短縮するために、生成人工知能をどのように使用できるのかという問題に対処する。
大規模言語モデルに基づくチャットボットが提案され,様々な機能拡張を備えたシミュレーションモデルの自動生成が可能となった。
大きな言語モデルに基づくチャットボット駆動のワークフロー Google Gemini 2.0 Flashは、GmshとGetDPを使用して2次元有限要素渦電流モデルを自動的に生成し、解決する。
Pythonはワークフローコンポーネント間のインタラクションのコーディネートと自動化に使用される。
この研究は、可変位置と数からなる円形断面を持つ導体幾何学を考察する。
さらに、ユーザーはカスタムな後処理ルーチンを定義し、モデル情報とシミュレーション結果の簡潔な要約を受け取ることができる。
それぞれの機能強化には、対応するアーキテクチャ修正とイラストレーターケーススタディが含まれる。
関連論文リスト
- URDF-Anything: Constructing Articulated Objects with 3D Multimodal Language Model [76.08429266631823]
3次元マルチモーダル大言語モデル(MLLM)に基づくエンドツーエンドの自動再構築フレームワークを提案する。
URDF-Anythingは、ポイントクラウドとテキストマルチモーダル入力に基づく自己回帰予測フレームワークを使用して、幾何学的セグメンテーションと運動論的パラメータ予測を協調的に最適化する。
シミュレーションと実世界の両方のデータセットの実験は、我々の手法が既存の手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2025-11-02T13:45:51Z) - LLM experiments with simulation: Large Language Model Multi-Agent System for Simulation Model Parametrization in Digital Twins [4.773175285216063]
本稿では,大規模言語モデル(LLM)を適用し,デジタル双生児におけるシミュレーションモデルのパラメトリゼーションを自動化する新しいフレームワークを提案する。
提案手法は,LLMの知識を取り入れたシミュレーションモデルのユーザビリティを向上させる。
このシステムは、ユーザのフレンドリさを高め、人間のユーザの認知負荷を軽減する可能性がある。
論文 参考訳(メタデータ) (2024-05-28T11:59:40Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Visual Deformation Detection Using Soft Material Simulation for Pre-training of Condition Assessment Models [3.0477617036157136]
オープンソースのシミュレーションツールであるBlenderを使用して、機械学習(ML)モデルのための合成データセットを作成することを提案する。
このプロセスでは、専門家情報を形状キーパラメータに翻訳して変形をシミュレートし、変形したオブジェクトと非変形したオブジェクトの両方のイメージを生成する。
論文 参考訳(メタデータ) (2024-04-02T01:58:53Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - MLMOD: Machine Learning Methods for Data-Driven Modeling in LAMMPS [0.0]
マイクロスケール力学と分子動力学を特徴付けるためのプロトタイプC++/Pythonパッケージを提案する。
このパッケージは、現在、メソモッドおよび分子動力学シミュレーションパッケージLAMMPSとPyTorchと統合されている。
論文 参考訳(メタデータ) (2021-07-29T22:55:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。