論文の概要: CADTrack: Learning Contextual Aggregation with Deformable Alignment for Robust RGBT Tracking
- arxiv url: http://arxiv.org/abs/2511.17967v1
- Date: Sat, 22 Nov 2025 08:10:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.549924
- Title: CADTrack: Learning Contextual Aggregation with Deformable Alignment for Robust RGBT Tracking
- Title(参考訳): CADTrack:ロバストなRGBTトラッキングのための変形可能なアライメントによるコンテキストアグリゲーションの学習
- Authors: Hao Li, Yuhao Wang, Xiantao Hu, Wenning Hao, Pingping Zhang, Dong Wang, Huchuan Lu,
- Abstract要約: RGB-Thermal (RGBT) トラッキングは、堅牢な全天候物体追跡のために可視および熱赤外モードを活用することを目的としている。
既存のRGBTトラッカーはモダリティの相違を解決するのに苦労している。
RGBT追跡のためのCADTrackと呼ばれる,変形可能なアライメントによるコンテキストアグリゲーション(Contextual Aggregation)を提案する。
- 参考スコア(独自算出の注目度): 68.71826342377004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-Thermal (RGBT) tracking aims to exploit visible and thermal infrared modalities for robust all-weather object tracking. However, existing RGBT trackers struggle to resolve modality discrepancies, which poses great challenges for robust feature representation. This limitation hinders effective cross-modal information propagation and fusion, which significantly reduces the tracking accuracy. To address this limitation, we propose a novel Contextual Aggregation with Deformable Alignment framework called CADTrack for RGBT Tracking. To be specific, we first deploy the Mamba-based Feature Interaction (MFI) that establishes efficient feature interaction via state space models. This interaction module can operate with linear complexity, reducing computational cost and improving feature discrimination. Then, we propose the Contextual Aggregation Module (CAM) that dynamically activates backbone layers through sparse gating based on the Mixture-of-Experts (MoE). This module can encode complementary contextual information from cross-layer features. Finally, we propose the Deformable Alignment Module (DAM) to integrate deformable sampling and temporal propagation, mitigating spatial misalignment and localization drift. With the above components, our CADTrack achieves robust and accurate tracking in complex scenarios. Extensive experiments on five RGBT tracking benchmarks verify the effectiveness of our proposed method. The source code is released at https://github.com/IdolLab/CADTrack.
- Abstract(参考訳): RGB-Thermal (RGBT) トラッキングは、堅牢な全天候物体追跡のために可視および熱赤外モードを活用することを目的としている。
しかし、既存のRGBTトラッカーはモダリティの相違を解決するのに苦労しており、ロバストな特徴表現には大きな課題が生じる。
この制限により、効果的なクロスモーダル情報伝搬と融合が妨げられ、トラッキングの精度が大幅に低下する。
この制限に対処するため、RGBTトラッカーのためのCADTrackと呼ばれるデフォルマブルアライメントフレームワークを用いたコンテキストアグリゲーションを提案する。
具体的には、まず、状態空間モデルを介して効率的な機能相互作用を確立するMamba-based Feature Interaction (MFI)をデプロイする。
この相互作用モジュールは線形複雑性で動作でき、計算コストを低減し、特徴の識別を改善する。
次に,Mixture-of-Experts(MoE)に基づくスパースゲーティングにより,バックボーン層を動的に活性化するコンテキスト集約モジュール(CAM)を提案する。
このモジュールは、層間機能から補完的なコンテキスト情報をエンコードすることができる。
最後に,デフォルマブルアライメントモジュール(DAM)を提案し,デフォルマブルサンプリングと時間的伝搬を統合し,空間的ミスアライメントと局所化ドリフトを緩和する。
上記のコンポーネントにより、複雑なシナリオにおいて、当社のCADTrackは堅牢で正確なトラッキングを実現します。
提案手法の有効性を5つのRGBT追跡ベンチマークで検証した。
ソースコードはhttps://github.com/IdolLab/CADTrack.comで公開されている。
関連論文リスト
- SwiTrack: Tri-State Switch for Cross-Modal Object Tracking [74.15663758681849]
クロスモーダルオブジェクトトラッキング(CMOT)は、ビデオストリームが異なるモード間で切り替える間、ターゲットの一貫性を維持する新しいタスクである。
SwiTrackは3つの特別なストリームを配置することでCMOTを再定義する新しいステートスイッチングフレームワークである。
論文 参考訳(メタデータ) (2025-11-20T10:52:54Z) - Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking [9.353589376846902]
線形複雑ビジョン・マンバネットワークに基づく効率的なRGB-Eventオブジェクト追跡フレームワークを提案する。
ソースコードと事前トレーニングされたモデルはhttps://github.com/Event-AHU/Mamba_FETrack.comで公開される。
論文 参考訳(メタデータ) (2025-06-30T12:24:01Z) - CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking [68.24998698508344]
CAMELはコンテキスト対応型マルチキューExpLoitationのための新しいアソシエイトモジュールである。
エンド・ツー・エンドの検知・バイ・トラック方式とは異なり,本手法は軽量かつ高速にトレーニングが可能であり,外部のオフ・ザ・シェルフモデルを活用することができる。
提案するオンライントラッキングパイプラインであるCAMELTrackは,複数のトラッキングベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-05-02T13:26:23Z) - CRSOT: Cross-Resolution Object Tracking using Unaligned Frame and Event
Cameras [43.699819213559515]
既存のRGB-DVSトラッキング用のデータセットは、DVS346カメラで収集される。
我々は、特別に構築されたデータ取得システムを用いて収集された、最初の不整合フレームイベントデータセットCRSOTを構築した。
ゆるやかなRGBイベントデータを用いても、ロバストなトラッキングを実現することのできる、新しい非整列オブジェクト追跡フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T14:20:22Z) - iKUN: Speak to Trackers without Retraining [21.555469501789577]
市販トラッカーとの通信を実現するため,iKUNと呼ばれる挿入可能な知識統一ネットワークを提案する。
局所化精度を向上させるために,プロセスノイズを動的に調整するKalman filter (NKF) のニューラルバージョンを提案する。
また、パブリックなDanceTrackデータセットをモーションとドレッシング記述で拡張することで、より困難なデータセットであるRefer-Danceにもコントリビュートしています。
論文 参考訳(メタデータ) (2023-12-25T11:48:55Z) - Modality-missing RGBT Tracking: Invertible Prompt Learning and High-quality Benchmarks [21.139161163767884]
モーダル情報は、熱センサーの自己校正やデータ伝送誤差などの要因によって見逃される可能性がある。
本稿では、コンテンツ保存プロンプトをよく訓練された追跡モデルに統合する、新しい非可逆的プロンプト学習手法を提案する。
提案手法は,最先端手法と比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2023-12-25T11:39:00Z) - Transparent Object Tracking with Enhanced Fusion Module [56.403878717170784]
我々は,我々の融合技術を用いて,透明物体追跡のための優れた結果を得る新しいトラッカーアーキテクチャを提案する。
我々の結果とコードの実装はhttps://github.com/kalyan05TOTEM.comで公開されます。
論文 参考訳(メタデータ) (2023-09-13T03:52:09Z) - Learning Dual-Fused Modality-Aware Representations for RGBD Tracking [67.14537242378988]
従来のRGBオブジェクトトラッキングと比較して、奥行きモードの追加は、ターゲットとバックグラウンドの干渉を効果的に解決することができる。
既存のRGBDトラッカーでは2つのモードを別々に使用しており、特に有用な共有情報は無視されている。
DMTracker(Dual-fused Modality-aware Tracker)を提案する。DMTrackerは,RGBDのロバストな追跡のために,対象対象物の情報的および識別的表現を学習することを目的としている。
論文 参考訳(メタデータ) (2022-11-06T07:59:07Z) - Transformer Tracking [76.96796612225295]
相関は追跡分野において、特に人気のあるシャム系トラッカーにおいて重要な役割を果たす。
本研究は,注意のみを用いてテンプレートと検索領域を効果的に結合した,新しい注意型特徴融合ネットワークを提案する。
実験により、TransTは6つの挑戦的なデータセットで非常に有望な結果が得られます。
論文 参考訳(メタデータ) (2021-03-29T09:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。