論文の概要: Video Object Recognition in Mobile Edge Networks: Local Tracking or Edge Detection?
- arxiv url: http://arxiv.org/abs/2511.20716v1
- Date: Tue, 25 Nov 2025 04:54:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:58.782531
- Title: Video Object Recognition in Mobile Edge Networks: Local Tracking or Edge Detection?
- Title(参考訳): モバイルエッジネットワークにおけるビデオオブジェクト認識:ローカルトラッキングかエッジ検出か?
- Authors: Kun Guo, Yun Shen, Xijun Wang, Chaoqun You, Yun Rui, Tony Q. S. Quek,
- Abstract要約: モバイルエッジコンピューティングの最近の進歩により、高精度ニューラルネットワークを備えたエッジサーバに集約的なオブジェクト検出をオフロードすることが可能になった。
このハイブリッドアプローチは有望なソリューションを提供するが、新たな課題として、エッジ検出とローカルトラッキングのタイミングを決定する。
局所的なトラッキングとエッジ検出を適応的に選択する深層強化学習に基づくアルゴリズムである単一デバイス環境での LTED-Ada を提案する。
- 参考スコア(独自算出の注目度): 57.000348519630286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fast and accurate video object recognition, which relies on frame-by-frame video analytics, remains a challenge for resource-constrained devices such as traffic cameras. Recent advances in mobile edge computing have made it possible to offload computation-intensive object detection to edge servers equipped with high-accuracy neural networks, while lightweight and fast object tracking algorithms run locally on devices. This hybrid approach offers a promising solution but introduces a new challenge: deciding when to perform edge detection versus local tracking. To address this, we formulate two long-term optimization problems for both single-device and multi-device scenarios, taking into account the temporal correlation of consecutive frames and the dynamic conditions of mobile edge networks. Based on the formulation, we propose the LTED-Ada in single-device setting, a deep reinforcement learning-based algorithm that adaptively selects between local tracking and edge detection, according to the frame rate as well as recognition accuracy and delay requirement. In multi-device setting, we further enhance LTED-Ada using federated learning to enable collaborative policy training across devices, thereby improving its generalization to unseen frame rates and performance requirements. Finally, we conduct extensive hardware-in-the-loop experiments using multiple Raspberry Pi 4B devices and a personal computer as the edge server, demonstrating the superiority of LTED-Ada.
- Abstract(参考訳): フレーム単位のビデオ分析に依存する高速で正確なビデオオブジェクト認識は、トラフィックカメラのようなリソース制約のあるデバイスにとって依然として課題である。
モバイルエッジコンピューティングの最近の進歩により、計算集約的なオブジェクト検出を、高精度なニューラルネットワークを備えたエッジサーバにオフロードし、軽量で高速なオブジェクト追跡アルゴリズムをデバイス上でローカルに実行できるようになった。
このハイブリッドアプローチは有望なソリューションを提供するが、新たな課題として、エッジ検出とローカルトラッキングのタイミングを決定する。
そこで我々は,連続するフレームの時間的相関と移動エッジネットワークの動的条件を考慮した,単一デバイスとマルチデバイスの両方のシナリオに対する2つの長期最適化問題を定式化する。
この定式化に基づき、フレームレートに応じて局所的なトラッキングとエッジ検出を適応的に選択する深層強化学習に基づくアルゴリズムであるシングルデバイス環境での LTED-Ada を提案する。
マルチデバイス環境では,フェデレート学習を用いた LTED-Ada をさらに強化し,デバイス間の協調的なポリシトレーニングを実現し,フレームレートや性能要求に対する一般化を向上する。
最後に,複数のRaspberry Pi 4Bデバイスとパーソナルコンピュータをエッジサーバとして使用して,広範なハードウェア・イン・ザ・ループ実験を行い,LTED-Adaの優位性を実証した。
関連論文リスト
- RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
エッジデバイス上でのリアルタイムオブジェクト検出は、その限られた計算リソースと、ディープニューラルネットワーク(DNN)ベースの検出モデルの高要求により、大きな課題を呈している。
本稿では,リソース制約のあるエッジ環境における精度-遅延トレードオフを最適化するフレームワークであるRE-POSEを紹介する。
論文 参考訳(メタデータ) (2025-01-16T10:56:45Z) - Edge Computing Enabled Real-Time Video Analysis via Adaptive
Spatial-Temporal Semantic Filtering [18.55091203660391]
本稿では,インテリジェント・ビジュアル・デバイスのためのエッジ・コンピューティングによるリアルタイム映像解析システムを提案する。
提案システムは,追跡支援対象検出モジュール(TAODM)と興味あるモジュールの領域(ROIM)から構成される。
TAODMは、トラッキングアルゴリズムで各ビデオフレームを局所的に処理するか、オブジェクト検出モデルにより推論されたエッジサーバにオフロードするか、オフロード決定を適応的に決定する。
論文 参考訳(メタデータ) (2024-02-29T07:42:03Z) - Task-Oriented Communication for Edge Video Analytics [11.03999024164301]
本稿では,エッジビデオ分析のためのタスク指向通信フレームワークを提案する。
複数のデバイスが視覚センサデータを収集し、その情報機能をエッジサーバに送信して処理する。
提案手法は,映像データのタスク関連情報を効果的に符号化し,既存の手法よりも高いレート性能のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-11-25T12:09:12Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Parallel Detection for Efficient Video Analytics at the Edge [5.547133811014004]
ディープニューラルネットワーク(DNN)訓練対象検出器は、エッジでのリアルタイムビデオ分析のためにミッションクリティカルシステムに広くデプロイされている。
ミッションクリティカルエッジサービスにおける一般的なパフォーマンス要件は、エッジデバイス上でのオンラインオブジェクト検出のほぼリアルタイムレイテンシである。
本稿では,エッジシステムにおける高速物体検出のためのマルチモデルマルチデバイス検出並列性を利用して,これらの問題に対処する。
論文 参考訳(メタデータ) (2021-07-27T02:50:46Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - ApproxDet: Content and Contention-Aware Approximate Object Detection for
Mobiles [19.41234144545467]
本稿では,モバイル機器用適応型ビデオオブジェクト検出フレームワークであるApproxDetを紹介する。
大規模なベンチマークビデオデータセット上でApproxDetを評価し,AdaScaleやYOLOv3と比較した。
ApproxDetは、幅広いコンテントやコンテンツの特徴に適応し、すべてのベースラインを誇張することができる。
論文 参考訳(メタデータ) (2020-10-21T04:11:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。