論文の概要: Through the telecom lens: Are all training samples important?
- arxiv url: http://arxiv.org/abs/2511.21668v1
- Date: Wed, 26 Nov 2025 18:44:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.25313
- Title: Through the telecom lens: Are all training samples important?
- Title(参考訳): テレコムレンズを通して:すべてのトレーニングサンプルは重要か?
- Authors: Shruti Bothe, Illyyne Saffar, Aurelie Boisbunon, Hasan Farooq, Julien Forgeat, Md Moin Uddin Chowdhury,
- Abstract要約: 本稿では,テレコムトレーニングにおける個人サンプルの役割を適用・分析することに着目し,同等の重要性の仮定を疑問視する。
本稿では、選択的に影響のあるデータを抽出し、精度を損なうことなく計算を削減できる重要度フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The rise of AI in telecommunications, from optimizing Radio Access Networks to managing user experience, has sharply increased data volumes and training demands. Telecom data is often noisy, high-dimensional, costly to store, process, and label. Despite Ai's critical role, standard workflows still assume all training samples contribute equally. On the other hand, next generation systems require AI models that are accurate, efficient, and sustainable.The paper questions the assumptions of equal importance by focusing on applying and analyzing the roles of individual samples in telecom training and assessing whether the proposed model optimizes computation and energy use. we perform sample-level gradient analysis across epochs to identify patterns of influence and redundancy in model learning. Based on this, we propose a sample importance framework thats electively prioritizes impactful data and reduces computation without compromising accuracy. Experiments on three real-world telecom datasets show that our method [reserves performance while reducing data needs and computational overhead while advancing the goals of sustainable AI in telecommunications.
- Abstract(参考訳): 無線アクセスネットワークの最適化からユーザエクスペリエンスの管理に至るまで、通信におけるAIの台頭は、データボリュームとトレーニング要求を大幅に増加させています。
通信データは、しばしば騒々しく、高次元で、保存、処理、ラベルにコストがかかる。
Aiの重要な役割にもかかわらず、標準的なワークフローでは、すべてのトレーニングサンプルが同等に寄与していると仮定している。
一方、次世代システムでは、正確で効率的で持続可能なAIモデルが必要であり、テレコムトレーニングにおける個々のサンプルの役割を適用・分析し、提案モデルが計算とエネルギー使用を最適化するかどうかを評価することによって、同等の重要性の仮定を疑問視する。
モデル学習における影響と冗長性のパターンを特定するため,エポックスにおけるサンプルレベルの勾配解析を行った。
そこで本研究では,影響のあるデータを選択的に優先順位付けし,精度を損なうことなく計算量を削減することを目的とした,サンプル重要度フレームワークを提案する。
3つの実世界のテレコムデータセットの実験により、我々の手法は、通信における持続可能なAIの目標を推し進めながら、データニーズと計算オーバーヘッドを減らしながら、パフォーマンスを保ちます。
関連論文リスト
- Accurate and Efficient Prediction of Wi-Fi Link Quality Based on Machine Learning [0.0]
本稿では指数移動平均の線形結合に基づくデータ駆動モデルの性能評価を行う。
機器メーカーによる一般的な訓練を可能にするチャンネルに依存しないモデルは、競争力のある性能を示した。
本研究は,産業環境におけるWi-Fiの信頼性向上のための機械学習に基づく予測モデルの実践的展開に関する知見を提供する。
論文 参考訳(メタデータ) (2025-09-23T12:52:01Z) - Scaling DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies [66.83950068218033]
スケーリング法則は、モデルのパラメータとトレーニングデータによって学習のパフォーマンスが向上することを示している。
性能向上の可能性にもかかわらず、スケーリング法則を深層強化学習に統合することは、完全には実現されていない。
本稿では,データ,ネットワーク,トレーニング予算という3次元のスケーリング戦略を体系的に分析することによって,このギャップに対処する。
論文 参考訳(メタデータ) (2025-08-05T08:03:12Z) - Losing is for Cherishing: Data Valuation Based on Machine Unlearning and Shapley Value [24.00172524434103]
我々は、機械学習を利用してデータ値を効率的に推定する新しいフレームワークUnlearning Shapleyを提案する。
提案手法は,モンテカルロサンプリングによるシェープリー値の計算を行い,再学習を回避し,全データへの依存を排除した。
この作業は、データバリュエーション理論と実践的デプロイメントのギャップを埋め、現代のAIエコシステムにスケーラブルでプライバシに準拠したソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-22T02:46:03Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
本稿では、すでに訓練済みの予測器に対するデータセットの一部の影響を除去するために特別に設計された機械学習の概念を紹介する。
局所モデルパラメータ変化の感度を影響関数とサンプル再重み付けを用いて評価することにより,性能認識アルゴリズムを提案する。
リアルな負荷データセットを用いて,線形,CNN,Mixerベースの負荷予測器上で,未学習アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-08-28T08:50:12Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference [86.03382625531951]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Responsible AI Challenges in End-to-end Machine Learning [4.509599899042536]
aiを一般公開する企業の多くは、モデルをトレーニングする場合、その正確性を改善するだけでなく、モデルがユーザを差別しないことを保証する必要がある、と述べている。
進歩を測る3つの重要な研究方向を提案し、現在進行中の研究を紹介します。
まず、責任あるAIを深くサポートし、公正性と堅牢性といった複数の目的を一緒に扱う必要があります。
第二に、責任あるAIは、機械学習のすべてのステップで広くサポートされなければならない。
論文 参考訳(メタデータ) (2021-01-15T04:55:03Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
スマートフォン、ウェアラブル、IoT(Internet of Things)デバイスは、教師付きモデルを学習するための集中リポジトリに蓄積できない豊富なデータを生成する。
本稿では,ウェーブレット変換に基づくテキストカルグラム・信号対応学習という自己教師付きアプローチを提案し,ラベルなしセンサ入力から有用な表現を学習する。
さまざまなパブリックデータセットのマルチビュー戦略を用いて,学習機能の品質を広範囲に評価し,すべての領域で高いパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-07-25T21:59:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。