論文の概要: CSV-Decode: Certifiable Sub-Vocabulary Decoding for Efficient Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2511.21702v1
- Date: Sun, 16 Nov 2025 14:02:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-07 19:06:32.341861
- Title: CSV-Decode: Certifiable Sub-Vocabulary Decoding for Efficient Large Language Model Inference
- Title(参考訳): CSV-Decode: 高速大言語モデル推論のための証明付きサブ語彙復号法
- Authors: Dong Liu, Yanxuan Yu, Ben Lengerich,
- Abstract要約: CSV-Decodeは、幾何上界を用いてデコードステップごとに小さなサブ語彙を構築する新しいアプローチである。
我々の手法は語彙をオフラインでクラスタ化し、センチロイド+ラディウス境界を用いて、どのトークンが語彙から安全に省略できるかを識別する。
- 参考スコア(独自算出の注目度): 4.832840038837715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models face significant computational bottlenecks during inference due to the expensive output layer computation over large vocabularies. We present CSV-Decode, a novel approach that uses geometric upper bounds to construct small sub-vocabularies for each decoding step, enabling efficient sparse computation while maintaining dual correctness guarantees: exact top-$k$ certification and $\varepsilon$-certified softmax approximations. Our method clusters vocabulary embeddings offline and uses centroid-plus-radius bounds to identify which tokens can be safely omitted from computation. We provide a complete system implementation with sparse GEMV kernels, multi-GPU sharding, and CUDA Graph optimization. Experimental results demonstrate significant speedup over full vocabulary decoding while maintaining distributional guarantees and low fallback rates. Our code implementation available at \href{https://github.com/FastLM/CSV-Decode}{https://github.com/FastLM/CSV-Decode}.
- Abstract(参考訳): 大規模言語モデルは、大語彙上の高価な出力層計算のため、推論中に重大な計算ボトルネックに直面している。
CSV-Decode(英語版)は、幾何上界を用いて各復号ステップの小さなサブ語彙を構築し、二重正当性保証を維持しつつ効率的なスパース計算を可能にする。
我々の手法は,オフラインで語彙クラスタを組込み,Centroid-plus-radius境界を用いて,どのトークンが計算から安全に省略できるかを識別する。
本稿では,分散GEMVカーネル,マルチGPUシャーディング,CUDAグラフ最適化を備えたシステム実装を提案する。
実験結果は,分散保証と低フォールバック率を維持しつつ,完全語彙復号化を著しく高速化することを示した。
コード実装は \href{https://github.com/FastLM/CSV-Decode}{https://github.com/FastLM/CSV-Decode} で公開しています。
関連論文リスト
- Learning to Parallel: Accelerating Diffusion Large Language Models via Learnable Parallel Decoding [21.609237262034636]
大規模言語モデル(LLM)における自己回帰復号には、$n$トークンに対して$mathcalO(n)$シーケンシャルステップが必要である。
本稿では,並列デコード学習(Learn2PD)を提案する。これは軽量かつ適応的なフィルタモデルをトレーニングし,各トークン位置に対して,現在の予測が最終出力と一致するかどうかを予測するフレームワークである。
この学習されたフィルタは、正しく予測された場合にのみトークンをアンマスクするオラクル並列復号法を近似する。
論文 参考訳(メタデータ) (2025-09-29T17:59:54Z) - NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding [54.88765757043535]
この研究は、統計的なn-gram言語モデルのデータ構造を再考し、GPU最適化推論の高速かつ並列な操作を可能にする。
我々のアプローチは NGPU-LM と呼ばれ、7% 未満の計算オーバーヘッドを持つ全ての主要な ASR モデルに対して、カスタマイズ可能なgreedy decoding を導入している。
提案手法は,ビーム探索による顕著な遅延を回避しつつ,greedy と beam search の精度ギャップの50%以上を排除できる。
論文 参考訳(メタデータ) (2025-05-28T20:43:10Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST)は、任意の長さの実世界のテキストスパンをLM世代に組み込むことができ、それらのソースへの属性を提供する。
NESTは、様々な知識集約タスクにおいて、基本LMの生成品質と帰属率を大幅に向上させる。
さらに、NESTは、Llama-2-Chat 70Bに適用した場合の推論時間において1.8倍のスピードアップを達成することにより、生成速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-05-29T17:55:03Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [23.633481089469836]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) は、歩行者を分離したカメラで識別する。
実値特徴記述子を用いた既存のReID法は精度が高いが、ユークリッド距離計算が遅いため効率が低い。
本稿では,ReID 処理を 0.25 倍高速化するサブスペース一貫性規則化 (SCR) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-13T02:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。