論文の概要: DNNs, Dataset Statistics, and Correlation Functions
- arxiv url: http://arxiv.org/abs/2511.21715v1
- Date: Tue, 18 Nov 2025 18:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-07 19:06:32.357476
- Title: DNNs, Dataset Statistics, and Correlation Functions
- Title(参考訳): DNN、データセット統計、相関関数
- Authors: Robert W. Batterman, James F. Woodward,
- Abstract要約: 画像認識にはデータセット構造が重要であると我々は主張する。
DNNが訓練される実際のデータセットにおける相関構造の性質と生成に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper argues that dataset structure is important in image recognition tasks (among other tasks). Specifically, we focus on the nature and genesis of correlational structure in the actual datasets upon which DNNs are trained. We argue that DNNs are implementing a widespread methodology in condensed matter physics and materials science that focuses on mesoscale correlation structures that live between fundamental atomic/molecular scales and continuum scales. Specifically, we argue that DNNs that are successful in image classification must be discovering high order correlation functions. It is well-known that DNNs successfully generalize in apparent contravention of standard statistical learning theory. We consider the implications of our discussion for this puzzle.
- Abstract(参考訳): 本稿では,データセット構造が画像認識タスク(他のタスク)において重要であることを論じる。
具体的には、DNNが訓練される実際のデータセットにおける相関構造の性質と生成に焦点を当てる。
我々は、DNNが、基本原子/分子スケールと連続体スケールの間に存在するメソスケール相関構造に焦点を当てた、凝縮物質物理学と材料科学の幅広い方法論を実装していると論じる。
具体的には、画像分類に成功しているDNNは高次相関関数を発見すべきである。
DNNが標準統計学習理論の明らかな防止に成功していることはよく知られている。
このパズルの議論の意味を考察する。
関連論文リスト
- Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features [68.3512123520931]
深層ニューラルネットワーク(DNN)学習相互作用のダイナミクスについて検討する。
本稿では,DNNが2段階の相互作用を学習していることを明らかにする。
第1相は主に中位と高位の相互作用を罰し、第2相は徐々に増加する順序の相互作用を学習する。
論文 参考訳(メタデータ) (2024-05-16T17:13:25Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Integrating Random Effects in Deep Neural Networks [4.860671253873579]
深層ニューラルネットワークにおける相関データを扱うために混合モデルフレームワークを提案する。
相関構造に基づく効果をランダムな効果として扱うことにより、混合モデルは過度に適合したパラメータ推定を避けることができる。
LMMNNと呼ばれる我々のアプローチは、様々な相関シナリオにおいて、自然競合よりも性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2022-06-07T14:02:24Z) - Deconfounded Training for Graph Neural Networks [98.06386851685645]
本稿では, コンバウンディング効果を緩和し, 臨界情報に対するラッチを緩和する新しいDecon Training(DTP)のパラダイムを提案する。
具体的には、注意モジュールを用いて臨界部分グラフと自明部分グラフをアンタングル化する。
これにより、GNNは、ラベルとの関係が複数のディストリビューションで堅牢である、より信頼性の高いサブグラフをキャプチャできる。
論文 参考訳(メタデータ) (2021-12-30T15:22:35Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
ディープニューラルネットワーク(DNN)の内部動作を説明するために,ニューラルアーキテクチャ・ディコンタングルメント(NAD)を導入する。
NADは、訓練済みのDNNを独立したタスクに従ってサブアーキテクチャに切り離すことを学び、推論プロセスを記述する情報フローを形成する。
その結果、誤分類された画像は、タスクサブアーキテクチャーに正しいサブアーキテクチャーに割り当てられる確率が高いことが示された。
論文 参考訳(メタデータ) (2020-03-30T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。