論文の概要: Barcode and QR Code Object Detection: An Experimental Study on YOLOv8 Models
- arxiv url: http://arxiv.org/abs/2511.22937v1
- Date: Fri, 28 Nov 2025 07:26:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.801181
- Title: Barcode and QR Code Object Detection: An Experimental Study on YOLOv8 Models
- Title(参考訳): BarcodeとQRコードオブジェクト検出: YOLOv8モデルの実験的検討
- Authors: Kushagra Pandya, Heli Hathi, Het Buch, Ravikumar R N, Shailendrasinh Chauhan, Sushil Kumar Singh,
- Abstract要約: 本研究は, YOLOv8 (You Only Look Once) アルゴリズムのオブジェクト検出効率の詳細な評価を行う。
私たちの目標は、さまざまな状況や環境において、YOLOv8の全体的なパフォーマンスを最適化することでした。
ナノモデルでは88.95%,小型モデルでは97.10%,中型では94.10%の精度を得た。
- 参考スコア(独自算出の注目度): 2.0847503603392927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research work dives into an in-depth evaluation of the YOLOv8 (You Only Look Once) algorithm's efficiency in object detection, specially focusing on Barcode and QR code recognition. Utilizing the real-time detection abilities of YOLOv8, we performed a study aimed at enhancing its talent in swiftly and correctly figuring out objects. Through large training and high-quality-tuning on Kaggle datasets tailored for Barcode and QR code detection, our goal became to optimize YOLOv8's overall performance throughout numerous situations and environments. The look encompasses the assessment of YOLOv8 throughout special version iterations: Nano, Small, and Medium, with a meticulous attention on precision, recall, and F1 assessment metrics. The consequences exhibit large improvements in object detection accuracy with every subsequent model refinement. Specifically, we achieved an accuracy of 88.95% for the nano model, 97.10% for the small model, and 94.10% for the medium version, showcasing the incremental improvements finished via model scaling. Our findings highlight the big strides made through YOLOv8 in pushing the limits of computer vision, ensuring its function as a milestone within the subject of object detection. This study sheds light on how model scaling affects object recognition, increasing the concept of deep learning-based computer creative and prescient techniques.
- Abstract(参考訳): 本研究は、オブジェクト検出におけるYOLOv8(You Only Look Once)アルゴリズムの効率性について、特にBarcodeとQRコード認識に焦点を当てた詳細な評価を行う。
YOLOv8のリアルタイム検出機能を利用して,物体を迅速かつ正確に把握する能力向上を目的とした研究を行った。
BarcodeとQRコード検出用に調整されたKaggleデータセットの大規模なトレーニングと高品質チューニングを通じて、当社の目標は、さまざまな状況や環境を通じてYOLOv8の全体的なパフォーマンスを最適化することでした。
この図は、特別なバージョンイテレーションを通じて、ナノ、スモール、ミディアムのYOLOv8の評価を含んでおり、精度、リコール、F1アセスメントのメトリクスに細心の注意を払っている。
その結果、その後のモデル改良の度にオブジェクト検出精度が大幅に向上した。
具体的には,ナノモデルでは88.95%,小型モデルでは97.10%,中型では94.10%の精度を達成し,モデルスケーリングによる漸進的な改善が示された。
我々の発見は、YOLOv8によるコンピュータビジョンの限界を押し進め、物体検出の分野におけるマイルストーンとしての機能を確保するための大きな歩みを浮き彫りにした。
この研究は、モデルスケーリングがオブジェクト認識にどのように影響するかについて光を当て、深層学習に基づくコンピュータ創造と先史的手法の概念を拡大する。
関連論文リスト
- A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning [67.72413262980272]
事前訓練された視覚モデル(PVM)は現代のロボティクスの基本であるが、その最適構成は定かではない。
セマンティック・ボトルネックを導入してオブジェクト中心の表現を誘導する手法であるSlotMIMを開発した。
提案手法は,画像認識,シーン理解,ロボット学習評価において,従来の作業よりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-03-10T06:18:31Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - YOLOv11: An Overview of the Key Architectural Enhancements [0.5639904484784127]
本稿では、オブジェクト検出、インスタンスセグメンテーション、ポーズ推定、オブジェクト指向オブジェクト検出(OBB)など、さまざまなコンピュータビジョンタスクにまたがるYOLOv11の拡張機能について検討する。
本稿では,パラメータ数と精度のトレードオフに着目し,平均精度(mAP)と計算効率の両面からモデルの性能改善を概観する。
我々の研究は、オブジェクト検出の広い視野におけるYOLOv11の位置と、リアルタイムコンピュータビジョンアプリケーションに対する潜在的な影響についての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-23T09:55:22Z) - P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
引き離された運転は重大な安全上の問題であり、世界中で多くの死者と負傷につながっている。
本研究では、注意をそらされた運転行動を検出するための効率的でリアルタイムな機械学習モデルの必要性に対処する。
リアルタイムオブジェクト検出システムを導入し、速度と精度の両方に最適化する。
論文 参考訳(メタデータ) (2024-10-21T02:56:44Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
本稿では,ディープラーニングモデルを用いた道路損傷検出のための総合ワークフローを提案する。
ハードウェアの制約を満たすため、大きな画像が収穫され、軽量モデルが利用される。
提案手法では,コーディネートアテンションレイヤを備えたカスタムYOLOv7モデルや,Tiny YOLOv7モデルなど,複数のモデルアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-10-10T22:55:12Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
本研究は, YOLOv9オブジェクト検出モデルに焦点をあて, アーキテクチャの革新, トレーニング方法論, 性能改善に焦点をあてる。
汎用高効率層集約ネットワークGELANやProgrammable Gradient Information PGIといった重要な進歩は、特徴抽出と勾配流を著しく向上させる。
本稿では, YOLOv9の内部特徴とその実世界の応用性について, リアルタイム物体検出の最先端技術として確立した。
論文 参考訳(メタデータ) (2024-09-12T07:46:58Z) - What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
本研究では, YOLOv8オブジェクト検出モデルの詳細解析を行った。
YOLOv5のような以前のイテレーションよりもアーキテクチャ、トレーニングテクニック、パフォーマンスの改善に重点を置いている。
論文では、Microsoft COCOやRoboflow 100のようなベンチマークにおけるYOLOv8のパフォーマンスをレビューし、その高精度でリアルタイムな機能を強調している。
論文 参考訳(メタデータ) (2024-08-28T15:18:46Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。