論文の概要: Object-Centric Data Synthesis for Category-level Object Detection
- arxiv url: http://arxiv.org/abs/2511.23450v1
- Date: Fri, 28 Nov 2025 18:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:56.029403
- Title: Object-Centric Data Synthesis for Category-level Object Detection
- Title(参考訳): カテゴリーレベルのオブジェクト検出のためのオブジェクト中心データ合成
- Authors: Vikhyat Agarwal, Jiayi Cora Guo, Declan Hoban, Sissi Zhang, Nicholas Moran, Peter Cho, Srilakshmi Pattabiraman, Shantanu Joshi,
- Abstract要約: オブジェクト中心データ(マルチビュー画像や3Dモデル)の形式で限られたデータが利用可能である場合、オブジェクト中心のデータ設定を導入する。
本研究では,4種類のデータ合成手法の性能評価を行い,新しいオブジェクトカテゴリのオブジェクト検出モデルを微調整する。
- 参考スコア(独自算出の注目度): 1.349100458364391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning approaches to object detection have achieved reliable detection of specific object classes in images. However, extending a model's detection capability to new object classes requires large amounts of annotated training data, which is costly and time-consuming to acquire, especially for long-tailed classes with insufficient representation in existing datasets. Here, we introduce the object-centric data setting, when limited data is available in the form of object-centric data (multi-view images or 3D models), and systematically evaluate the performance of four different data synthesis methods to finetune object detection models on novel object categories in this setting. The approaches are based on simple image processing techniques, 3D rendering, and image diffusion models, and use object-centric data to synthesize realistic, cluttered images with varying contextual coherence and complexity. We assess how these methods enable models to achieve category-level generalization in real-world data, and demonstrate significant performance boosts within this data-constrained experimental setting.
- Abstract(参考訳): 物体検出に対するディープラーニングのアプローチは、画像中の特定の物体のクラスを確実に検出することに成功した。
しかし、モデルの検出能力を新しいオブジェクトクラスに拡張するには、大量のアノテートされたトレーニングデータが必要である。
本稿では、オブジェクト中心データ(マルチビュー画像または3Dモデル)の形式で限られたデータが利用可能である場合のオブジェクト中心データ設定を紹介し、この設定において、新しいオブジェクトカテゴリのオブジェクト検出モデルを微調整するための4つの異なるデータ合成手法の性能を体系的に評価する。
アプローチは、単純な画像処理技術、3Dレンダリング、および画像拡散モデルに基づいており、オブジェクト中心のデータを使用して、コンテキストコヒーレンスと複雑さの異なるリアルで散在した画像を合成する。
実世界のデータにおけるカテゴリレベルの一般化を実現するために,これらの手法がいかに有効かを評価するとともに,このデータ制約された実験環境での大幅な性能向上を示す。
関連論文リスト
- Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching [19.730504197461144]
本稿では,RGB画像のみを用いてオブジェクトのポーズを決定するために,新しい一般化可能なオブジェクトポーズ推定手法を提案する。
本手法は,オブジェクトの参照画像1枚で操作し,3次元オブジェクトモデルやオブジェクトの複数ビューの必要性を解消する。
論文 参考訳(メタデータ) (2024-11-24T14:31:50Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
本稿では,2次元セグメントを3次元に上げ,ニューラルネットワーク表現を用いて融合させる新しい手法を提案する。
このアプローチの中核は、高速なクラスタリング目的関数であり、多数のオブジェクトを持つシーンにスケーラブルで適しています。
我々のアプローチは、ScanNet、Hypersim、Replicaのデータセットからの挑戦的なシーンにおいて、最先端の状況よりも優れています。
論文 参考訳(メタデータ) (2023-06-07T17:57:45Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments [21.393674766169543]
本稿では,オブジェクト認識のためのFew-Shot Object Learningデータセットについて紹介する。
私たちは、異なる視点から、オブジェクトごとに9つのRGB-D画像を持つ336の現実世界のオブジェクトをキャプチャしました。
評価結果から, ロボット環境下では, 数発の物体分類において, 改良の余地がまだ大きいことが示唆された。
論文 参考訳(メタデータ) (2022-07-06T05:57:24Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Conditional Object-Centric Learning from Video [34.012087337046005]
我々は、リアルな合成シーンのための光の流れを予測するために、スロット注意を逐次拡張する。
我々は,このモデルの初期状態が,第1フレーム内の物体の質量の中心など,小さなヒントの集合に条件付けるだけで,インスタンスのセグメンテーションを大幅に改善できることを示す。
これらの利点は、トレーニング分布を超えて、新しいオブジェクト、新しいバックグラウンド、より長いビデオシーケンスに一般化される。
論文 参考訳(メタデータ) (2021-11-24T16:10:46Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。