論文の概要: G-KV: Decoding-Time KV Cache Eviction with Global Attention
- arxiv url: http://arxiv.org/abs/2512.00504v1
- Date: Sat, 29 Nov 2025 14:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.271075
- Title: G-KV: Decoding-Time KV Cache Eviction with Global Attention
- Title(参考訳): G-KV:グローバルアテンションを考慮した復号時間KVキャッシュの確立
- Authors: Mengqi Liao, Lu Wang, Chaoyun Zhang, Zekai Shen, Xiaowei Mao, Si Qin, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Huaiyu Wan,
- Abstract要約: 大規模言語モデル(LLM)は複雑なタスクに優れるが、長いシーケンス長のため、計算とメモリの重大な課題に遭遇する。
KVキャッシュ圧縮は推論の効率を大幅に向上させる効果的な手法として登場した。
本稿では,グローバルスコアリング機構を用いたKVキャッシュ消去手法であるG-KVを提案する。
- 参考スコア(独自算出の注目度): 57.47409249054187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent reasoning large language models (LLMs) excel in complex tasks but encounter significant computational and memory challenges due to long sequence lengths. KV cache compression has emerged as an effective approach to greatly enhance the efficiency of reasoning. However, existing methods often focus on prompt compression or token eviction with local attention score, overlooking the long-term importance of tokens. We propose G-KV, a KV cache eviction method that employs a global scoring mechanism, combining local and historical attention scores to more accurately assess token importance. Additionally, we introduce post-training techniques, including reinforcement learning and distillation, to optimize models for compressed KV cache settings. The code of this paper is available on: https://github.com/microsoft/G-KV.
- Abstract(参考訳): 近年の大規模言語モデル (LLM) は複雑なタスクでは優れているが、長いシーケンス長による計算とメモリの問題に遭遇している。
KVキャッシュ圧縮は推論の効率を大幅に向上させる効果的な手法として登場した。
しかし、既存の手法はしばしば、トークンの長期的重要性を見越して、局所的な注意スコアによる即時圧縮やトークンの排除に焦点を当てている。
本稿では,グローバルスコアリング機構を用いたKVキャッシュ消去手法であるG-KVを提案する。
さらに, 圧縮KVキャッシュ設定のためのモデル最適化のために, 強化学習や蒸留を含むポストトレーニング手法を導入する。
本論文のコードは、https://github.com/microsoft/G-KV.comで公開されている。
関連論文リスト
- Judge Q: Trainable Queries for Optimized Information Retention in KV Cache Eviction [53.83828564664595]
大規模言語モデル(LLM)は、キー値(KV)キャッシュを使用して、シーケンス処理中に履歴情報を格納する。
KVキャッシュ消去の現在の方法は、通常、プレフィルフェーズからの最後のウィンドウをクエリとして利用し、消去のためのKV重要度スコアを計算する。
ソフトトークンリストを組み込んだ新しいトレーニング手法であるジャッジQを提案する。
論文 参考訳(メタデータ) (2025-09-13T03:34:12Z) - FAEDKV: Infinite-Window Fourier Transform for Unbiased KV Cache Compression [18.12657364501536]
FAEDKVは、トレーニング不要のKVキャッシュ圧縮フレームワークである。
初期の情報と最近の情報の両方を保存している。
LongBenchベンチマークの実験では、FAEDKVは既存のメソッドよりも最大22%優れていた。
論文 参考訳(メタデータ) (2025-07-26T18:20:25Z) - AttentionPredictor: Temporal Patterns Matter for KV Cache Compression [64.75459635661562]
我々は,KVキャッシュ圧縮とクリティカルトークン識別のための注意パターンを直接予測する,学習に基づく最初の手法であるAttentionPredictorを提案する。
AttentionPredictorは、注意スコアを正確に予測し、無視可能なメモリを消費する統一予測モデルを共有する。
注意情報の大半を保持することで、AttentionPredictorは、キャッシュオフロードシナリオで13$times$KVキャッシュ圧縮と5.6$times$スピードアップを達成する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - Eigen Attention: Attention in Low-Rank Space for KV Cache Compression [9.080678336379528]
我々は,低ランク空間における注意操作を行うEigen Attentionを提案し,KVキャッシュメモリのオーバーヘッドを低減する。
その結果,Eigen AttentionはKVキャッシュサイズを最大40%削減し,注目動作遅延を最大60%低減し,性能の低下を最小化できることがわかった。
論文 参考訳(メタデータ) (2024-08-10T22:47:12Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。