論文の概要: Slovak Conceptual Dictionary
- arxiv url: http://arxiv.org/abs/2512.00579v1
- Date: Sat, 29 Nov 2025 18:15:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.307149
- Title: Slovak Conceptual Dictionary
- Title(参考訳): スロバキアの概念辞典
- Authors: Miroslav Blšták,
- Abstract要約: この種の最初の言語ツールとしてスロバキア語の概念辞書を導入する。
スロバキア語は限られた言語資源を持つ言語であるため、現在十分な量のデータを持つ機械可読な言語データソースは存在しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When solving tasks in the field of natural language processing, we sometimes need dictionary tools, such as lexicons, word form dictionaries or knowledge bases. However, the availability of dictionary data is insufficient in many languages, especially in the case of low resourced languages. In this article, we introduce a new conceptual dictionary for the Slovak language as the first linguistic tool of this kind. Since Slovak language is a language with limited linguistic resources and there are currently not available any machine-readable linguistic data sources with a sufficiently large volume of data, many tasks which require automated processing of Slovak text achieve weaker results compared to other languages and are almost impossible to solve.
- Abstract(参考訳): 自然言語処理の分野でタスクを解く際には、辞書、語形辞書、知識ベースといった辞書ツールが必要になることがある。
しかし、多くの言語、特に低リソース言語では辞書データの入手が不十分である。
本稿では,スロバキア語に関する新しい概念辞書を,この種の最初の言語ツールとして紹介する。
スロバキア語は限られた言語資源を持つ言語であり、現在十分な量のデータを持つ機械可読な言語データソースは存在しないため、スロバキア語の自動処理を必要とするタスクの多くは、他の言語に比べて弱い結果を得ることができ、ほとんど解決不可能である。
関連論文リスト
- Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - LIMIT: Language Identification, Misidentification, and Translation using
Hierarchical Models in 350+ Languages [27.675441924635294]
現在のシステムは世界の7000の言語の大部分を正確に識別することはできない。
まず、350以上の言語で50Kの多言語・並列児童話のコーパスMCS-350をコンパイルする。
言語識別のための新しい誤予測分解階層モデル LIMIt を提案する。
論文 参考訳(メタデータ) (2023-05-23T17:15:43Z) - Dict-NMT: Bilingual Dictionary based NMT for Extremely Low Resource
Languages [1.8787713898828164]
本稿では,辞書の品質,学習データセットのサイズ,言語家族などの影響を詳細に分析する。
複数の低リソーステスト言語で得られた結果は、ベースラインよりもバイリンガル辞書ベースの方法の明確な利点を示している。
論文 参考訳(メタデータ) (2022-06-09T12:03:29Z) - Allocating Large Vocabulary Capacity for Cross-lingual Language Model
Pre-training [59.571632468137075]
最近の言語間言語モデルでは,語彙の容量が限られているため,多くの言語が不足していることがわかった。
本稿では,各言語の語彙能力を決定するアルゴリズムであるVoCapを提案する。
この問題に対処するために,k-NNに基づくターゲットサンプリングを提案し,コストの高いソフトマックスを高速化する。
論文 参考訳(メタデータ) (2021-09-15T14:04:16Z) - Cross-lingual Transfer for Text Classification with Dictionary-based
Heterogeneous Graph [10.64488240379972]
言語間テキスト分類では,高ソース言語におけるタスク固有トレーニングデータが利用可能であることが求められている。
このようなトレーニングデータの収集は,ラベル付けコストやタスク特性,プライバシの懸念などによって不可能になる可能性がある。
本稿では,ハイソース言語とバイリンガル辞書のタスク非依存語埋め込みのみを利用する代替手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T16:40:40Z) - When Word Embeddings Become Endangered [0.685316573653194]
本稿では,異なる資源豊富な言語の単語埋め込みとリソース不足言語の翻訳辞書を用いて,絶滅危惧言語の単語埋め込みを構築する手法を提案する。
言語間の単語埋め込みと感情分析モデルはすべて、簡単に使えるPythonライブラリを通じて公開されています。
論文 参考訳(メタデータ) (2021-03-24T15:42:53Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。