論文の概要: ART: Adaptive Response Tuning Framework -- A Multi-Agent Tournament-Based Approach to LLM Response Optimization
- arxiv url: http://arxiv.org/abs/2512.00617v1
- Date: Sat, 29 Nov 2025 20:16:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.328404
- Title: ART: Adaptive Response Tuning Framework -- A Multi-Agent Tournament-Based Approach to LLM Response Optimization
- Title(参考訳): ART: Adaptive Response Tuning Framework -- LLM応答最適化のためのマルチエージェントトーナメントベースのアプローチ
- Authors: Omer Jauhar Khan,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の理解と生成において顕著な能力を示した。
本稿では,トーナメント型ELOランキングとマルチエージェント推論を用いたART(Adaptive Response Tuning)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. However, single-model responses often exhibit inconsistencies, hallucinations, and varying quality across different query domains. This paper presents ART (Adaptive Response Tuning), a novel framework that employs tournament-style ELO ranking and multi-agent reasoning to systematically optimize LLM outputs. By enabling multiple LLM agents to compete, critique, and collaborate through structured tournament workflows, ART produces consensus responses that outperform individual model outputs. Our framework introduces configurable tournament parameters, dynamic agent selection, and multiple consensus fusion strategies. Experimental evaluations demonstrate significant improvements in response accuracy, coherence, and reliability compared to baseline single-model approaches. The ART framework provides a scalable, production-ready solution for applications requiring high-quality, vetted LLM responses, achieving an 8.4% improvement in overall quality metrics and R22 values exceeding 0.96 in ELO rating convergence.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語の理解と生成において顕著な能力を示した。
しかし、シングルモデル応答は、しばしば異なるクエリドメイン間で不整合、幻覚、および様々な品質を示す。
本稿では,トーナメントスタイルのELOランキングとマルチエージェント推論を用いて,LLM出力を体系的に最適化するART(Adaptive Response Tuning)を提案する。
複数のLLMエージェントが構造化トーナメントワークフローを通じて競合し、批判し、協力することを可能にし、ARTは個々のモデル出力を上回るコンセンサス応答を生成する。
本フレームワークでは,構成可能なトーナメントパラメータ,動的エージェント選択,複数コンセンサス融合戦略を導入している。
実験により, 応答精度, コヒーレンス, 信頼性は, ベースライン単モデルアプローチと比較して有意に向上した。
ARTフレームワークは、高品質で精査されたLCM応答を必要とするアプリケーションに対して、スケーラブルでプロダクション対応のソリューションを提供する。
関連論文リスト
- Multi-Agent LLM Orchestration Achieves Deterministic, High-Quality Decision Support for Incident Response [0.0]
大規模言語モデル(LLM)は、本番システムにおけるインシデント応答を加速することを約束する。
しかし、単一エージェントアプローチは曖昧で使用不能なレコメンデーションを生成する。
コンテナ化されたフレームワークであるMyAntFarm.aiを紹介し、マルチエージェントオーケストレーションがインシデント応答の品質を変えることを示す。
論文 参考訳(メタデータ) (2025-11-19T06:06:11Z) - Beyond Majority Voting: LLM Aggregation by Leveraging Higher-Order Information [57.397381631496906]
最適重み(OW)と逆サプライシング人気度(ISP)という2つの新しいアグリゲーションアルゴリズムを開発した。
我々の理論的分析は、これらの手法が軽微な仮定の下での多数決の本質的な制限を確実に緩和することを示している。
我々は,我々のアルゴリズムを人工データセット,UltraFeedbackやMMLUなどのLLMファインチューニングベンチマーク,実世界の医療環境ARMMAN上で実証的に検証した。
論文 参考訳(メタデータ) (2025-10-01T22:21:50Z) - Uncertainty-Aware Answer Selection for Improved Reasoning in Multi-LLM Systems [55.6590601898194]
大規模言語モデル(LLM)は例外的な機能を示しているが、複数のLLMから最も信頼性の高い応答を選択することは依然として困難である。
既存のアプローチは、しばしばコストのかかる外部検証器、人間の評価器、または単一のモデルから複数のサンプルを必要とする自己整合技術に依存している。
校正されたログ類似度スコアを用いて,複数のLLMから最適な応答を選択するための,原理的,斬新で,計算的に効率的な手法を提案する。
論文 参考訳(メタデータ) (2025-09-30T01:25:19Z) - StepORLM: A Self-Evolving Framework With Generative Process Supervision For Operations Research Language Models [18.500046072165254]
我々は、生成過程を監督する新しい自己進化フレームワークであるStepORLMを紹介する。
StepORLMの中核となるのは、ポリシーモデルと生成プロセス報酬モデル(GenPRM)が相互に反復的に改善される、共進化ループである。
論文 参考訳(メタデータ) (2025-09-26T16:39:10Z) - Learning to Refine: Self-Refinement of Parallel Reasoning in LLMs [102.48588475875749]
本稿では,新しい並列テスト時間スケーリングフレームワークであるGenerative Self-Refinement (GSR)を紹介する。
GSRは一連の候補応答を並列に生成し、その後自己精製を行い、新しい優れた解を合成する。
提案手法は,5つの数学ベンチマークにおいて,最先端性能を実現する。
論文 参考訳(メタデータ) (2025-08-27T06:51:48Z) - RLAE: Reinforcement Learning-Assisted Ensemble for LLMs [21.77261258691006]
大規模言語モデル(LLM)は、様々なモデルの多様な強みを効果的に組み合わせ、様々なタスクのパフォーマンスを高めるための有望なアプローチを提供する。
マルコフ決定プロセス(MDP)のレンズを通してアンサンブルを再構成する新しいフレームワークであるLLMのための強化学習支援アンサンブルを提案する。
提案手法では,入力コンテキストと中間生成状態の両方を考慮してアンサンブル重みを動的に調整するRLエージェントを提案する。
論文 参考訳(メタデータ) (2025-05-31T07:38:41Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
本稿では,2つの主要コンポーネントのエンドツーエンドトレーニングを可能にするDROという,直接検索拡張最適化フレームワークを提案する。
DROは、 (i) 文書置換推定と (ii) 再重み付けされ、段階的に改善されたRAGコンポーネントの2つのフェーズの間で交代する。
理論解析により,DROは強化学習における政策段階的な手法に類似していることが明らかとなった。
論文 参考訳(メタデータ) (2025-05-05T23:54:53Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - CoEvol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation [33.33513657902765]
命令に対する応答を改善するためのLLMベースのマルチエージェント協調フレームワークであるCoEvolを提案する。
実証的には、CoEvolを搭載したモデルはMT-BenchとAlpacaEvalで評価された競争ベースラインを上回った。
論文 参考訳(メタデータ) (2024-06-11T08:35:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。