論文の概要: ESMC: MLLM-Based Embedding Selection for Explainable Multiple Clustering
- arxiv url: http://arxiv.org/abs/2512.00725v1
- Date: Sun, 30 Nov 2025 04:36:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.384595
- Title: ESMC: MLLM-Based Embedding Selection for Explainable Multiple Clustering
- Title(参考訳): ESMC: 説明可能な複数クラスタリングのためのMLLMベースの埋め込み選択
- Authors: Xinyue Wang, Yuheng Jia, Hui Liu, Junhui Hou,
- Abstract要約: MLLM(Multi-modal large language model)は、ユーザ主導のクラスタリングを実現するために利用することができる。
本手法はまず,MLLMのテキストトークンの隠蔽状態が対応する特徴と強く関連していることを明らかにする。
また、擬似ラベル学習を付加した軽量クラスタリングヘッドを採用し、クラスタリング精度を大幅に向上させた。
- 参考スコア(独自算出の注目度): 79.69917150582633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Typical deep clustering methods, while achieving notable progress, can only provide one clustering result per dataset. This limitation arises from their assumption of a fixed underlying data distribution, which may fail to meet user needs and provide unsatisfactory clustering outcomes. Our work investigates how multi-modal large language models (MLLMs) can be leveraged to achieve user-driven clustering, emphasizing their adaptability to user-specified semantic requirements. However, directly using MLLM output for clustering has risks for producing unstructured and generic image descriptions instead of feature-specific and concrete ones. To address these issues, our method first discovers that MLLMs' hidden states of text tokens are strongly related to the corresponding features, and leverages these embeddings to perform clusterings from any user-defined criteria. We also employ a lightweight clustering head augmented with pseudo-label learning, significantly enhancing clustering accuracy. Extensive experiments demonstrate its competitive performance on diverse datasets and metrics.
- Abstract(参考訳): 典型的なディープクラスタリングメソッドは、注目すべき進歩を達成しているが、データセット毎に1つのクラスタリング結果しか提供できない。
この制限は、ユーザのニーズを満たすことができず、不満足なクラスタリング結果を提供する、固定された基盤データ分散の仮定から生じる。
本研究では,マルチモーダル大規模言語モデル(MLLM)がユーザ主導のクラスタリングを実現するためにどのように活用できるかを考察し,ユーザ固有のセマンティック要件への適応性を強調した。
しかし、クラスタリングにMLLM出力を直接使用すると、特徴特異的で具体的ではなく、非構造的で汎用的な画像記述を生成するリスクがある。
これらの問題に対処するために,本手法はまず,MLLMの隠れたテキストトークンの状態が対応する特徴と強く関連していることを発見し,これらの埋め込みを利用してユーザ定義基準からクラスタリングを行う。
また、擬似ラベル学習を付加した軽量クラスタリングヘッドを採用し、クラスタリング精度を大幅に向上させた。
大規模な実験では、さまざまなデータセットやメトリクス上での競合性能が実証されている。
関連論文リスト
- LLM-MemCluster: Empowering Large Language Models with Dynamic Memory for Text Clustering [52.41664454251679]
大規模言語モデル(LLM)は、テキストクラスタリングを行う前例のない能力を提供することで、教師なしの学習を再構築している。
既存のメソッドは、しばしば外部モジュールを持つ複雑なパイプラインに依存し、真にエンドツーエンドのアプローチを犠牲にする。
LLM-MemClusterは,クラスタリングをLLMネイティブタスクとして再認識する新しいフレームワークである。
論文 参考訳(メタデータ) (2025-11-19T13:22:08Z) - In-Context Clustering with Large Language Models [50.25868718329313]
ICCは、注意機構を通じて入力間の複雑な関係をキャプチャする。
事前学習したLLMは、テキスト符号化された数値データに対して、印象的なゼロショットクラスタリング機能を示す。
我々の研究は、文脈内学習を教師なしの設定に拡張し、クラスタリングにおけるLLMの有効性と柔軟性を示します。
論文 参考訳(メタデータ) (2025-10-09T17:07:55Z) - Agent-Centric Personalized Multiple Clustering with Multi-Modal LLMs [40.38930402847949]
エージェント中心のパーソナライズされたクラスタリングフレームワークを提案する。
エージェントはリレーショナルグラフを横断して、ユーザの関心事に基づいてクラスタを検索する。
その結果,提案手法はカードオーダーとカードサイツのベンチマークで0.9667と0.9481のNMIスコアを得ることができた。
論文 参考訳(メタデータ) (2025-03-28T08:45:15Z) - Personalized Clustering via Targeted Representation Learning [12.685373069492448]
クラスタリングは伝統的に、ラベルのないデータ内の自然なグループ構造を明らかにすることを目的としています。
ターゲット表現学習を明示的に行うパーソナライズされたクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T10:28:51Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。