論文の概要: REM: Evaluating LLM Embodied Spatial Reasoning through Multi-Frame Trajectories
- arxiv url: http://arxiv.org/abs/2512.00736v1
- Date: Sun, 30 Nov 2025 05:20:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.388951
- Title: REM: Evaluating LLM Embodied Spatial Reasoning through Multi-Frame Trajectories
- Title(参考訳): REM:多フレーム軌道によるLLM身体的空間推論の評価
- Authors: Jacob Thompson, Emiliano Garcia-Lopez, Yonatan Bisk,
- Abstract要約: 本稿では,空間推論のための制御可能な3次元環境を用いたベンチマークREM(Reasoning over Embodied Multi-Frame Trajectories)を紹介する。
REMは、オブジェクトの永続性/識別、空間的関係、動的エンボディされた視点における数値的追跡などの重要な側面を体系的に評価する。
評価の結果、最高の性能を示す現在のモデルでは、全体的な性能が期待できるが、人間によって容易に扱える程度の複雑性レベルでは信頼性が低下していることがわかった。
- 参考スコア(独自算出の注目度): 19.741468026765062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans build viewpoint-independent cognitive maps through navigation, enabling intuitive reasoning about object permanence and spatial relations. We argue that multimodal large language models (MLLMs), despite extensive video training, lack this fundamental spatial reasoning capability, a critical limitation for embodied applications. To demonstrate these limitations and drive research, we introduce REM (Reasoning over Embodied Multi-Frame Trajectories), a benchmark using controllable 3D environments for long-horizon embodied spatial reasoning. REM systematically evaluates key aspects like object permanence/distinction, spatial relationships, and numerical tracking across dynamic embodied viewpoints. Our evaluation shows that the best-performing current models exhibit promising overall performance, but become increasingly unreliable at even moderate complexity levels easily handled by humans. These findings highlight challenges MLLMs face in developing robust spatial representations from sequential visual input. Consequently, REM provides targeted metrics and diagnostics to foster improved spatial understanding in future models.
- Abstract(参考訳): 人間はナビゲーションを通じて視点に依存しない認知マップを構築し、物体の永続性と空間的関係についての直感的な推論を可能にする。
マルチモーダルな大言語モデル (MLLM) は広範なビデオトレーニングにもかかわらず、この基本的な空間推論能力は欠如しており、エンボディドアプリケーションにとって重要な限界である。
これらの制約を実証し,研究を進めるために,長軸埋め込み空間推論のための制御可能な3次元環境を用いたREM(Reasoning over Embodied Multi-Frame Trajectories)を提案する。
REMは、オブジェクトの永続性/識別、空間的関係、動的エンボディされた視点における数値的追跡などの重要な側面を体系的に評価する。
評価の結果、最高の性能を示す現在のモデルでは、全体的な性能が期待できるが、人間によって容易に扱える中程度の複雑性レベルでは信頼性が低下していることが明らかとなった。
これらの知見は、連続的な視覚入力から頑健な空間表現を開発する上で、MLLMが直面する課題を浮き彫りにする。
その結果、REMは将来のモデルにおける空間的理解を改善するために、ターゲットとなるメトリクスと診断を提供する。
関連論文リスト
- LTD-Bench: Evaluating Large Language Models by Letting Them Draw [57.237152905238084]
LTD-Benchは、大規模言語モデル(LLM)のブレークスルーベンチマークである。
LLMの評価を抽象的なスコアから直接観察可能な視覚出力に変換する。
LTD-Benchの視覚出力は強力な診断分析を可能にし、モデル類似性を調べるための潜在的アプローチを提供する。
論文 参考訳(メタデータ) (2025-11-04T08:11:23Z) - Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks [108.15756345836901]
大規模モデルを用いたマルチモーダル空間推論タスクの包括的レビューを行う。
我々は、視覚言語ナビゲーションやアクションモデルを含む、具体的AIの進歩についてレビューする。
我々は,新しいセンサによる空間的理解に寄与する音声やエゴセントリックビデオなどの新たなモダリティを考察する。
論文 参考訳(メタデータ) (2025-10-29T17:55:43Z) - How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective [103.44502230776352]
視覚言語モデル(VLM)における視覚空間推論(VSR)の系統的研究について述べる。
空間インテリジェンスを3つのレベル,すなわち基本的な知覚,空間理解,空間計画,および空間インテリジェンスベンチマークSIBenchに分類した。
論文 参考訳(メタデータ) (2025-09-23T12:00:14Z) - SpatialViz-Bench: An MLLM Benchmark for Spatial Visualization [44.427830927596204]
SpaceViz-Benchは4つのサブ能力にまたがる12のタスクを持つ空間視覚化のための総合的なベンチマークである。
33種類の最先端MLLMを評価した結果,多彩な性能の変動がみられ,反直感的な結果が得られた。
論文 参考訳(メタデータ) (2025-07-10T10:27:20Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [68.46716645478661]
視覚言語モデル (VLM) は視覚的内容の理解と推論において顕著な能力を示した。
現在のVLMは、主に自我中心の空間的推論(カメラの観点から)に優れるが、同中心の視点に一般化することができない。
マルチ視点空間位置認識評価に特化して設計された,初の総合的なベンチマークであるViewSpatial-Benchを紹介する。
論文 参考訳(メタデータ) (2025-05-27T17:59:26Z) - SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding [64.15606979785355]
マルチモーダル大規模言語モデル(MLLM)は,質問応答タスクにおいて顕著な成功を収めているが,空間的理解能力は乏しい。
既存のMLLMは3次元空間認識と理解能力を持っているか?
論文 参考訳(メタデータ) (2025-05-22T17:59:03Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。