論文の概要: Uncertainty Quantification for Deep Regression using Contextualised Normalizing Flows
- arxiv url: http://arxiv.org/abs/2512.00835v1
- Date: Sun, 30 Nov 2025 11:08:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.443478
- Title: Uncertainty Quantification for Deep Regression using Contextualised Normalizing Flows
- Title(参考訳): 文脈正規化フローを用いた深部回帰の不確かさの定量化
- Authors: Adriel Sosa Marco, John Daniel Kirwan, Alexia Toumpa, Simos Gerasimou,
- Abstract要約: 本稿では,予測間隔と完全条件付き予測分布の両方を生成する新しい不確実性定量化手法であるMCNFを紹介する。
MCNFは、基礎となるトレーニングされた予測モデル上で動作するため、予測モデルの再トレーニングは不要である。
我々は、MCNFに基づく不確実性推定が十分に校正され、最先端の不確実性定量化手法と競合し、下流の意思決定タスクに対してよりリッチな情報を提供する実験的な証拠を提供する。
- 参考スコア(独自算出の注目度): 1.8899300124593648
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantifying uncertainty in deep regression models is important both for understanding the confidence of the model and for safe decision-making in high-risk domains. Existing approaches that yield prediction intervals overlook distributional information, neglecting the effect of multimodal or asymmetric distributions on decision-making. Similarly, full or approximated Bayesian methods, while yielding the predictive posterior density, demand major modifications to the model architecture and retraining. We introduce MCNF, a novel post hoc uncertainty quantification method that produces both prediction intervals and the full conditioned predictive distribution. MCNF operates on top of the underlying trained predictive model; thus, no predictive model retraining is needed. We provide experimental evidence that the MCNF-based uncertainty estimate is well calibrated, is competitive with state-of-the-art uncertainty quantification methods, and provides richer information for downstream decision-making tasks.
- Abstract(参考訳): 深部回帰モデルにおける不確実性の定量化は、モデルの信頼性と高リスク領域における安全な意思決定の両方において重要である。
既存のアプローチでは、予測間隔が分布情報を見落とし、マルチモーダル分布や非対称分布が意思決定に与える影響を無視している。
同様に、完全にあるいは近似されたベイズ法は、予測された後続密度を得る一方で、モデルアーキテクチャと再訓練に大きな変更を要求する。
本稿では,予測間隔と完全条件付き予測分布を同時に生成するポストホック不確実性定量化手法であるMCNFを紹介する。
MCNFは、基礎となるトレーニングされた予測モデル上で動作するため、予測モデルの再トレーニングは不要である。
我々は、MCNFに基づく不確実性推定が十分に校正され、最先端の不確実性定量化手法と競合し、下流の意思決定タスクに対してよりリッチな情報を提供する実験的な証拠を提供する。
関連論文リスト
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
コンフォーマル予測(Conformal Prediction)は、モデルの不確実性を表現するための有望なフレームワークである。
本稿では,最先端CP手法とその理論的基礎について考察する。
論文 参考訳(メタデータ) (2023-06-01T16:37:50Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
よく校正されたモデルでは、不確実性推定はモデル誤差と完全に相関する。
本稿では,モデル誤差に整合した品質不確実性推定を導出するための,新しい誤差整合不確実性最適化手法を提案する。
本研究では, 平均変位誤差を1.69%, 4.69%, モデル誤差との不確実性相関を17.22%, 19.13%, ピアソン相関係数で定量化することにより, 平均変位誤差を1.69%, 4.69%改善することを示した。
論文 参考訳(メタデータ) (2022-12-09T12:33:26Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Diffusion Tensor Estimation with Uncertainty Calibration [6.5085381751712506]
本研究では,拡散テンソルを推定し,推定の不確実性を計算する深層学習手法を提案する。
データ依存の不確実性はネットワークによって直接計算され、損失減衰によって学習される。
提案手法によって計算された推定の不確実性は,モデルのバイアスを強調し,領域シフトを検出し,測定における雑音の強さを反映できることを示す。
論文 参考訳(メタデータ) (2021-11-21T15:58:01Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。