論文の概要: The Silence that Speaks: Neural Estimation via Communication Gaps
- arxiv url: http://arxiv.org/abs/2512.01056v1
- Date: Sun, 30 Nov 2025 19:58:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.563304
- Title: The Silence that Speaks: Neural Estimation via Communication Gaps
- Title(参考訳): 話すサイレンス:コミュニケーションギャップによる神経推定
- Authors: Shubham Aggarwal, Dipankar Maity, Tamer Başar,
- Abstract要約: CALMは、コミュニケーションスケジューリングと推定器設計の2つの課題を共同で解決する、新しい学習ベースのフレームワークである。
本研究では,CALMが推定器とスケジューラ間の暗黙的な調整を復号化して「サイレンス」の事例から情報を抽出し,推定精度を向上させることを示す。
- 参考スコア(独自算出の注目度): 1.7332551623907755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate remote state estimation is a fundamental component of many autonomous and networked dynamical systems, where multiple decision-making agents interact and communicate over shared, bandwidth-constrained channels. These communication constraints introduce an additional layer of complexity, namely, the decision of when to communicate. This results in a fundamental trade-off between estimation accuracy and communication resource usage. Traditional extensions of classical estimation algorithms (e.g., the Kalman filter) treat the absence of communication as 'missing' information. However, silence itself can carry implicit information about the system's state, which, if properly interpreted, can enhance the estimation quality even in the absence of explicit communication. Leveraging this implicit structure, however, poses significant analytical challenges, even in relatively simple systems. In this paper, we propose CALM (Communication-Aware Learning and Monitoring), a novel learning-based framework that jointly addresses the dual challenges of communication scheduling and estimator design. Our approach entails learning not only when to communicate but also how to infer useful information from periods of communication silence. We perform comparative case studies on multiple benchmarks to demonstrate that CALM is able to decode the implicit coordination between the estimator and the scheduler to extract information from the instances of 'silence' and enhance the estimation accuracy.
- Abstract(参考訳): 正確なリモート状態推定は、複数の意思決定エージェントが共有された帯域制限されたチャネル上で対話し、通信する、自律的でネットワーク化された動的システムの基本コンポーネントである。
これらの通信制約は、通信のタイミング決定という、複雑さの新たなレイヤを導入します。
これにより、推定精度と通信リソース使用量の間には、根本的なトレードオフが生じる。
古典的推定アルゴリズム(例えばカルマンフィルタ)の伝統的な拡張は、コミュニケーションの欠如を「欠落」情報として扱う。
しかし、沈黙そのものはシステムの状態に関する暗黙的な情報を運ぶことができ、もし適切に解釈すれば、明示的なコミュニケーションがなくても、推定品質を高めることができる。
しかし、この暗黙の構造を活用すれば、比較的単純なシステムであっても、重要な分析上の課題が生じる。
本稿では,コミュニケーションスケジューリングと推定器設計の2つの課題を共同で解決する新しい学習基盤であるCALM(Communication-Aware Learning and Monitoring)を提案する。
我々のアプローチは,コミュニケーションのタイミングだけでなく,コミュニケーションの沈黙の期間から有用な情報を推測する方法も必要である。
複数のベンチマークで比較ケーススタディを行い、CALMが推定器とスケジューラ間の暗黙的な調整をデコードし、「サイレンス」のインスタンスから情報を抽出し、推定精度を高めることができることを示した。
関連論文リスト
- Multi-Modal Self-Supervised Semantic Communication [52.76990720898666]
本稿では,マルチモーダルな自己教師型学習を活用し,タスク非依存の特徴抽出を強化するマルチモーダルセマンティックコミュニケーションシステムを提案する。
提案手法は,訓練関連通信オーバーヘッドを最小限に抑えつつ,モダリティの不変性とモダリティ特有の特徴の両方を効果的に捉えている。
この結果は、セマンティックコミュニケーションにおけるマルチモーダルな自己教師型学習の利点を浮き彫りにし、より効率的でスケーラブルなエッジ推論システムへの道を開いた。
論文 参考訳(メタデータ) (2025-03-18T06:13:02Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
単一ユーザと複数ユーザのコミュニケーションシナリオに対して,認知意味コミュニケーションフレームワークが2つ提案されている。
知識グラフから推論規則をマイニングすることにより,効果的な意味補正アルゴリズムを提案する。
マルチユーザ認知型セマンティックコミュニケーションシステムにおいて,異なるユーザのメッセージを識別するために,メッセージ復元アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:01:43Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
社会学習は、専門家からのヒントを使って、異質なポリシーを整列し、サンプルの複雑さを減らし、部分的に観察可能なタスクを解決する。
本稿では,情報ボトルネックに基づく教師なし手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T03:23:27Z) - Emergent Quantized Communication [34.31732248872158]
本稿では,メッセージの量子化という,離散的なコミュニケーションを実現するための代替手法を提案する。
メッセージの量子化により、モデルのエンドツーエンドのトレーニングが可能になり、複数のセットアップで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2022-11-04T12:39:45Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
トポロジカル空間の観点から意味コミュニケーションを研究する。
送信機はまずデータを$k$の単純複素数にマッピングし、その高次相関を学習する。
受信機は構造を復号し、行方不明または歪んだデータを推測する。
論文 参考訳(メタデータ) (2022-10-30T22:33:44Z) - Federated Reinforcement Learning at the Edge [1.4271989597349055]
現代のサイバー物理アーキテクチャでは、異なる物理的位置にあるシステムから収集されたデータを使用して適切な振る舞いを学び、不確実な環境に適応する。
本稿では,複数のエージェントが分散的に収集された時系列データに対して,強化学習問題を共同で解決するために,効率的にコミュニケーションを行う必要がある設定について考察する。
通信効率向上のためのアルゴリズムが提案され、理論的保証、実践的実装、数値評価がサポートされている。
論文 参考訳(メタデータ) (2021-12-11T03:28:59Z) - Common Language for Goal-Oriented Semantic Communications: A Curriculum
Learning Framework [66.81698651016444]
目標指向タスク実行を実現するための包括的セマンティックコミュニケーションフレームワークを提案する。
カリキュラム学習(CL)と強化学習(RL)を組み合わせた新しいトップダウンフレームワークを提案する。
シミュレーションの結果,提案手法は,学習中の収束時間,タスク実行時間,送信コストにおいて従来のRLよりも優れていた。
論文 参考訳(メタデータ) (2021-11-15T19:13:55Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。