論文の概要: Accelerating Inference of Masked Image Generators via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2512.01094v1
- Date: Sun, 30 Nov 2025 21:28:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.579149
- Title: Accelerating Inference of Masked Image Generators via Reinforcement Learning
- Title(参考訳): 強化学習によるマスク画像生成装置の高速化
- Authors: Pranav Subbaraman, Shufan Li, Siyan Zhao, Aditya Grover,
- Abstract要約: より少ないステップで高品質な画像を生成するために、事前訓練されたMGMを高速化する新しいパラダイムであるSpeed-RLを提案する。
提案手法は,画像品質を同等に保ちながら,ベースモデルを3倍の速度で高速化できることを示した。
- 参考スコア(独自算出の注目度): 41.30941040845135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Masked Generative Models (MGM)s demonstrate strong capabilities in generating high-fidelity images. However, they need many sampling steps to create high-quality generations, resulting in slow inference speed. In this work, we propose Speed-RL, a novel paradigm for accelerating a pretrained MGMs to generate high-quality images in fewer steps. Unlike conventional distillation methods which formulate the acceleration problem as a distribution matching problem, where a few-step student model is trained to match the distribution generated by a many-step teacher model, we consider this problem as a reinforcement learning problem. Since the goal of acceleration is to generate high quality images in fewer steps, we can combine a quality reward with a speed reward and finetune the base model using reinforcement learning with the combined reward as the optimization target. Through extensive experiments, we show that the proposed method was able to accelerate the base model by a factor of 3x while maintaining comparable image quality.
- Abstract(参考訳): Masked Generative Models (MGM) は高忠実度画像を生成する強力な能力を示す。
しかし、彼らは高品質な世代を作るために多くのサンプリングステップを必要とし、結果として推論速度が遅くなる。
本研究では,より少ないステップで高品質な画像を生成するために,事前訓練されたMGMを高速化する新しいパラダイムであるSpeed-RLを提案する。
数段階の学生モデルを用いて,多段階の教師モデルが生成する分布に一致するように学習する従来の蒸留法とは異なり,この問題を強化学習問題とみなす。
加速度の目標は、より少ないステップで高品質な画像を生成することなので、品質の報酬とスピードの報酬を組み合わせ、強化学習と組み合わせた報酬を最適化対象としてベースモデルを微調整することができる。
広範にわたる実験により,提案手法は画像品質を同等に保ちながら,3倍の係数でベースモデルを高速化することができた。
関連論文リスト
- Boosting Generative Image Modeling via Joint Image-Feature Synthesis [15.133906625258797]
低レベル画像潜在者を共同でモデル化するために拡散モデルを活用することで、ギャップをシームレスに橋渡しする新しい生成画像モデリングフレームワークを提案する。
我々の潜在セマンティック拡散アプローチは、純雑音からコヒーレントな画像-特徴対を生成することを学ぶ。
複雑な蒸留目的の必要をなくすことで、我々の統一設計は訓練を単純化し、強力な新しい推論戦略である表現誘導を解き放つ。
論文 参考訳(メタデータ) (2025-04-22T17:41:42Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.57727062920458]
本稿では,非自己回帰型マスク画像モデリング(MIM)をSDXLのような最先端拡散モデルに匹敵するレベルまで高めるMeissonicを提案する。
高品質なトレーニングデータを活用し、人間の嗜好スコアから得られるマイクロ条件を統合し、特徴圧縮層を用いる。
我々のモデルは、高画質の高精細画像を生成する際に、SDXLのような既存のモデルに適合するだけでなく、しばしば性能を上回ります。
論文 参考訳(メタデータ) (2024-10-10T17:59:17Z) - RL for Consistency Models: Faster Reward Guided Text-to-Image Generation [15.238373471473645]
強化学習(RL)を用いた微調整一貫性モデルのためのフレームワークを提案する。
RLCM(Reinforcement Learning for Consistency Model)と呼ばれる我々のフレームワークは、一貫性モデルの反復推論プロセスをRLプロシージャとしてフレーム化します。
RL微調整拡散モデルと比較して、RCCMの列車は大幅に高速で、報奨目標に基づいて測定された生成の質を向上し、2段階の推論ステップで高品質な画像を生成することにより推論手順を高速化する。
論文 参考訳(メタデータ) (2024-03-25T15:40:22Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
本研究ではまず,ネットワークの計算冗長性について検討する。
次に、モデルの冗長性ブロックをプルークし、ネットワーク性能を維持する。
第3に,計算集約型注意部を高速化するグローバル地域対話型注意(GRI)を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:37:47Z) - Accelerating Score-based Generative Models for High-Resolution Image
Synthesis [42.076244561541706]
スコアベース生成モデル(SGM)は、最近、将来性のある生成モデルのクラスとして登場した。
本研究では,SGMによる高分解能発生の加速について考察する。
本稿では,空間および周波数領域の構造的先行性を活用することによって,TDAS(Target Distribution Smpling Aware)手法を提案する。
論文 参考訳(メタデータ) (2022-06-08T17:41:14Z) - Incorporating Reinforced Adversarial Learning in Autoregressive Image
Generation [39.55651747758391]
本稿では,自己回帰モデルに対するポリシー勾配最適化に基づく強化適応学習(RAL)を提案する。
RALはまた、VQ-VAEフレームワークの異なるモジュール間のコラボレーションを強化する。
提案手法は,64$times$64画像解像度でCelebaの最先端結果を実現する。
論文 参考訳(メタデータ) (2020-07-20T08:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。