論文の概要: nnMobileNet++: Towards Efficient Hybrid Networks for Retinal Image Analysis
- arxiv url: http://arxiv.org/abs/2512.01273v1
- Date: Mon, 01 Dec 2025 04:45:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.68464
- Title: nnMobileNet++: Towards Efficient Hybrid Networks for Retinal Image Analysis
- Title(参考訳): nnMobileNet++:網膜画像解析のための効率的なハイブリッドネットワークを目指して
- Authors: Xin Li, Wenhui Zhu, Xuanzhao Dong, Hao Wang, Yujian Xiong, Oana Dumitrascu, Yalin Wang,
- Abstract要約: 本稿では,畳み込み表現とトランスフォーマー表現を段階的にブリッジするハイブリッドアーキテクチャであるnnMobileNet++を提案する。
nnMobileNet++は、計算コストを低く保ちながら最先端または高い競争精度を達成する。
- 参考スコア(独自算出の注目度): 10.186038549004266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal imaging is a critical, non-invasive modality for the early detection and monitoring of ocular and systemic diseases. Deep learning, particularly convolutional neural networks (CNNs), has significant progress in automated retinal analysis, supporting tasks such as fundus image classification, lesion detection, and vessel segmentation. As a representative lightweight network, nnMobileNet has demonstrated strong performance across multiple retinal benchmarks while remaining computationally efficient. However, purely convolutional architectures inherently struggle to capture long-range dependencies and model the irregular lesions and elongated vascular patterns that characterize on retinal images, despite the critical importance of vascular features for reliable clinical diagnosis. To further advance this line of work and extend the original vision of nnMobileNet, we propose nnMobileNet++, a hybrid architecture that progressively bridges convolutional and transformer representations. The framework integrates three key components: (i) dynamic snake convolution for boundary-aware feature extraction, (ii) stage-specific transformer blocks introduced after the second down-sampling stage for global context modeling, and (iii) retinal image pretraining to improve generalization. Experiments on multiple public retinal datasets for classification, together with ablation studies, demonstrate that nnMobileNet++ achieves state-of-the-art or highly competitive accuracy while maintaining low computational cost, underscoring its potential as a lightweight yet effective framework for retinal image analysis.
- Abstract(参考訳): 網膜イメージングは、眼疾患や全身疾患の早期発見とモニタリングのための重要な非侵襲的モダリティである。
ディープラーニング、特に畳み込みニューラルネットワーク(CNN)は、眼底画像分類、病変検出、血管分割などのタスクをサポートする自動網膜分析において大きな進歩を遂げている。
代表的軽量ネットワークとして、nnMobileNetは、計算効率を保ちながら、複数の網膜ベンチマークで強い性能を示した。
しかし、純粋に畳み込み型アーキテクチャは、信頼性の高い臨床診断に血管の特徴が重要であるにもかかわらず、本質的には長距離依存関係を捉え、不規則な病変と網膜画像に特徴的な細長い血管パターンをモデル化することに苦慮している。
そこで我々は, 畳み込み表現とトランスフォーマー表現を段階的にブリッジするハイブリッドアーキテクチャであるnnMobileNet++を提案する。
このフレームワークは3つの重要なコンポーネントを統合している。
(i)境界認識特徴抽出のためのダイナミックヘビ畳み込み
(II)グローバル・コンテキスト・モデリングのための第2のダウンサンプリング・ステージ後に導入されたステージ固有のトランスフォーマー・ブロック
3) 一般化を改善するために前訓練した網膜画像。
分類のための複数の公開網膜データセットの実験は、アブレーション研究とともに、nnMobileNet++が計算コストを低く保ちながら最先端または高い競争精度を達成し、網膜画像解析のための軽量で効果的なフレームワークとしての可能性を示している。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
マルチプレックスネットワークのレンズを通してmIF画像を効率的に処理する新しいフレームワークであるMewを紹介する。
Mew は、幾何学情報のための Voronoi ネットワークと、セルワイドの均一性を捉えるセル型ネットワークという、2つの異なる層からなる多重ネットワークを革新的に構築する。
このフレームワークは、トレーニング中にグラフ全体を処理できるスケーラブルで効率的なグラフニューラルネットワーク(GNN)を備えている。
論文 参考訳(メタデータ) (2024-07-25T08:22:30Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
ブラディングアイの病気は、しばしば変化した網膜形態と相関し、眼底画像の網膜構造をセグメント化することによって臨床的に識別できる。
深層学習は、医用画像のセグメンテーションにおいて有望であるが、反復的な畳み込みとプール操作への依存は、エッジ情報の表現を妨げる可能性がある。
LMBiS-Net と呼ばれる軽量な画素レベルのCNNを網膜血管のセグメンテーションのために提案する。
論文 参考訳(メタデータ) (2023-09-10T09:03:53Z) - LDMRes-Net: Enabling Efficient Medical Image Segmentation on IoT and
Edge Platforms [9.626726110488386]
本稿では,IoTおよびエッジプラットフォーム上での医用画像のセグメンテーションに適した,軽量なデュアルマルチスケール残差ブロック型ニューラルネットワークを提案する。
LDMRes-Netは、非常に少ない学習可能なパラメータ(0.072M)で制限を克服し、リソース制約のあるデバイスに非常に適している。
論文 参考訳(メタデータ) (2023-06-09T10:34:18Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - A novel approach for glaucoma classification by wavelet neural networks
using graph-based, statisitcal features of qualitatively improved images [0.0]
我々は、最適な拡張網膜画像特徴にウェーブレットニューラルネットワーク(WNN)を用いた新しい緑内障分類手法を提案する。
WNN分類器の性能は、様々なデータセットを持つ多層パーセプトロンニューラルネットワークと比較される。
論文 参考訳(メタデータ) (2022-06-24T06:19:30Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
近年の進歩により、畳み込みニューラルネットワーク(CNN)アーキテクチャは乳がん検出のためのコンピュータ支援診断(CAD)システムの設計に利用できることが示されている。
乳腺病理像の2値分類のためのCNNモデルについて検討した。
我々は,200倍,400倍に拡大した病理像に対して,トレーニング済みのCNNネットワークを利用可能なBreaKHisデータセットで検証した。
論文 参考訳(メタデータ) (2022-01-04T03:09:40Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。