論文の概要: Beyond Confidence: Adaptive and Coherent Decoding for Diffusion Language Models
- arxiv url: http://arxiv.org/abs/2512.02044v1
- Date: Wed, 26 Nov 2025 09:49:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.52506
- Title: Beyond Confidence: Adaptive and Coherent Decoding for Diffusion Language Models
- Title(参考訳): 信頼を超えて: 拡散言語モデルのための適応的かつコヒーレントなデコーディング
- Authors: Kecheng Chen, Ziru Liu, Xijia Tao, Hui Liu, Xinyu Fu, Suiyun Zhang, Dandan Tu, Lingpeng Kong, Rui Liu, Haoliang Li,
- Abstract要約: コヒーレントコンテキストデコーディング(Coherent Contextual Decoding, CCD)は、2つのコアイノベーションに基づいて構築された新しい推論フレームワークである。
CCDは、歴史的文脈を活用してシーケンスコヒーレンスを高める軌道修正機構を採用している。
拡散ステップに基づく厳密なアロケーションの代わりに,各ステップのアンマスク予算を動的に調整する適応型サンプリング戦略を導入する。
- 参考スコア(独自算出の注目度): 64.92045568376705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Language Models (DLMs) have recently achieved significant success due to their any-order generation capabilities. However, existing inference methods typically rely on local, immediate-step metrics such as confidence or entropy which inherently lack a more reliable perspective. This limitation frequently leads to inconsistent sampling trajectories and suboptimal generation quality. To address this, we propose Coherent Contextual Decoding (CCD), a novel inference framework built upon two core innovations. First, CCD employs a trajectory rectification mechanism that leverages historical context to enhance sequence coherence, enabling the early rejection of suboptimal paths. We demonstrate that this mechanism is theoretically equivalent to modeling the consistency of historical steps via the conditional mutual information between context and token predictions. Building on this theoretical insight, we further address the inefficiency of conventional uniform decoding budgets. Instead of rigid allocations based on diffusion steps, we introduce an adaptive sampling strategy that dynamically adjusts the unmasking budget for each step according to our consistency metric. Consequently, our method significantly improves the quality of generation trajectories while accelerating the sampling process. Empirically, our method achieves a simultaneous enhancement in both inference speed and performance across diverse benchmarks on Dream and LLaDA, delivering up to 3.48x speedup alongside 3.91% performance improvement.
- Abstract(参考訳): 拡散言語モデル(DLM)は、最近、その任意の順序生成能力によって大きな成功を収めた。
しかし、既存の推論手法は一般的に、信頼性やエントロピーといった、より信頼性の高い視点を欠いている局所的な、即時的なメトリクスに依存している。
この制限は、しばしば不整合サンプリング軌道と準最適生成品質をもたらす。
これを解決するために,2つのコア技術をベースに構築された新しい推論フレームワークであるCoherent Contextual Decoding (CCD)を提案する。
第一に、CCDは、歴史的文脈を活用してシーケンスコヒーレンスを高める軌道修正機構を用いて、最適下経路の早期拒絶を可能にする。
このメカニズムは、文脈とトークン予測の間の条件付き相互情報を通じて、歴史的ステップの一貫性をモデル化することと理論的に等価であることを示す。
この理論的洞察に基づいて、従来の一様復号化予算の非効率性をさらに解決する。
拡散ステップに基づく厳密なアロケーションではなく,各ステップのアンメイキング予算を整合度基準に従って動的に調整する適応型サンプリング戦略を導入する。
その結果,本手法はサンプリング過程を加速しながら生成軌道の品質を著しく向上させることができた。
実験により,DreamとLLaDAのベンチマークにおける推論速度と性能の同時向上を実現し,最大3.48倍の高速化と3.91%の性能向上を実現した。
関連論文リスト
- Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
視覚言語モデル(VLM)は、素晴らしいゼロショット機能を示すが、ラベル付きデータが利用できない場合、下流タスクの分散シフトに苦慮する。
本稿では,信頼性を両面から高めるReliable Test-Time Adaptation (ReTA)法を提案する。
論文 参考訳(メタデータ) (2025-07-13T05:37:33Z) - Unified Enhancement of the Generalization and Robustness of Language Models via Bi-Stage Optimization [2.502393972789905]
本稿では,LMの一般化とロバスト性の両方を均一に向上する二段階最適化フレームワークを提案する。
提案手法は,従来の手法と比較して,LMの一般化とロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2025-03-19T13:50:36Z) - E2ED^2:Direct Mapping from Noise to Data for Enhanced Diffusion Models [15.270657838960114]
拡散モデルは、視覚的生成モデリングにおけるデファクト・プライマリ・パラダイムとして確立されてきた。
最終生成サンプルから初期雑音への直接最適化を実現する新しいエンドツーエンド学習パラダイムを提案する。
Fr'eche't Inception Distance (FID) と CLIP のスコアは,サンプリングステップが少なくても大幅に向上する。
論文 参考訳(メタデータ) (2024-12-30T16:06:31Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [55.0194604505437]
投機的復号化は,大規模言語モデル推論を高速化する手法として広く採用されている。
本稿では,離散拡散モデルを用いてドラフトシーケンスを生成する投機的復号法を提案する。
論文 参考訳(メタデータ) (2024-08-10T21:24:25Z) - Efficient Text-driven Motion Generation via Latent Consistency Training [21.348658259929053]
非線形逆拡散軌道を解くための動き潜時整合トレーニングフレームワーク(MLCT)を提案する。
これらの拡張を組み合わせることで、非画素モダリティおよび潜在表現空間における安定かつ一貫性のあるトレーニングを実現する。
論文 参考訳(メタデータ) (2024-05-05T02:11:57Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
本稿では,3次元生成タスクの拡散先行性向上を目的とした統合フレームワークを提案する。
拡散先行と拡散モデルの訓練手順の相違を同定し、3次元生成の質を著しく損なう。
論文 参考訳(メタデータ) (2023-12-08T03:55:34Z) - Federated Distributionally Robust Optimization with Non-Convex Objectives: Algorithm and Analysis [21.913563167426872]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。