論文の概要: G-SHARP: Gaussian Surgical Hardware Accelerated Real-time Pipeline
- arxiv url: http://arxiv.org/abs/2512.02482v1
- Date: Tue, 02 Dec 2025 07:18:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.763021
- Title: G-SHARP: Gaussian Surgical Hardware Accelerated Real-time Pipeline
- Title(参考訳): G-SHARP:ガウス外科用ハードウェア高速化リアルタイムパイプライン
- Authors: Vishwesh Nath, Javier G. Tejero, Ruilong Li, Filippo Filicori, Mahdi Azizian, Sean D. Huver,
- Abstract要約: G-SHARPは商業的に互換性があり、リアルタイムの手術シーン再構築フレームワークである。
G-SHARPはApache (Apache-2.0) の差別化可能な Gaussianizer 上に構築された最初の外科的パイプラインである。
IGX OrinおよびThorエッジハードウェア上にG-SHARPをデプロイするHoloscan SDKアプリケーションを提供する。
- 参考スコア(独自算出の注目度): 5.536213729035224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose G-SHARP, a commercially compatible, real-time surgical scene reconstruction framework designed for minimally invasive procedures that require fast and accurate 3D modeling of deformable tissue. While recent Gaussian splatting approaches have advanced real-time endoscopic reconstruction, existing implementations often depend on non-commercial derivatives, limiting deployability. G-SHARP overcomes these constraints by being the first surgical pipeline built natively on the GSplat (Apache-2.0) differentiable Gaussian rasterizer, enabling principled deformation modeling, robust occlusion handling, and high-fidelity reconstructions on the EndoNeRF pulling benchmark. Our results demonstrate state-of-the-art reconstruction quality with strong speed-accuracy trade-offs suitable for intra-operative use. Finally, we provide a Holoscan SDK application that deploys G-SHARP on NVIDIA IGX Orin and Thor edge hardware, enabling real-time surgical visualization in practical operating-room settings.
- Abstract(参考訳): G-SHARPは, 変形性組織の高速かつ高精度な3次元モデリングを必要とする, 侵襲的な最小限の手順のために設計された, 商業的に互換性のあるリアルタイムな手術シーン再構築フレームワークである。
最近のガウシアンスプレイティングアプローチは、リアルタイムの内視鏡的再構成が進んでいるが、既存の実装は、しばしば非商用デリバティブに依存し、デプロイ可能性を制限する。
G-SHARP は、GSplat (Apache-2.0) の微分可能なガウスラスタライザ上にネイティブに構築された最初の外科的パイプラインである。
本研究は,術中使用に適した高い速度精度のトレードオフを有する最先端の再建品質を示すものである。
最後に,NVIDIA IGX OrinおよびThorエッジハードウェア上でG-SHARPをデプロイするHoloscan SDKアプリケーションを提供する。
関連論文リスト
- RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors [54.81109375939306]
RGE-GSは、拡散に基づく生成と報酬誘導ガウス積分を相乗化する新しい拡張的再構築フレームワークである。
本稿では,復元フェーズに先立って一貫したパターンを識別・優先順位付けする報奨ネットワークを提案する。
復元過程において,シーン収束度に応じてガウス最適化の進捗を自動的に調整する学習戦略を考案した。
論文 参考訳(メタデータ) (2025-06-28T08:02:54Z) - X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction [64.2059940799033]
現在の方法では、時間分解能を呼吸ゲーティング装置で固定相に識別する。
新規なフレームワークであるX$2$-Gaussianは、動的放射スプラッティングと自己監督型呼吸運動学習を統合することで、連続的な4DCT再構成を可能にする。
論文 参考訳(メタデータ) (2025-03-27T17:59:57Z) - Feature-EndoGaussian: Feature Distilled Gaussian Splatting in Surgical Deformable Scene Reconstruction [26.358467072736524]
3DGSの拡張であるFeature-EndoGaussian (FEG)を導入し、2Dセグメンテーションキューを3Dレンダリングに統合し、リアルタイムなセマンティックとシーン再構築を実現する。
FEGは先行法に比べて優れた性能(SSIMは0.97、PSNRは39.08、LPIPSは0.03)を達成している。
論文 参考訳(メタデータ) (2025-03-08T10:50:19Z) - SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction [18.074890506856114]
幾何学的精度を向上した手術シーン再構築のための動的3次元ガウススプレイティングフレームワークであるStagementGSを提案する。
提案手法は,まず奥行き先を用いてガウス点雲を初期化し,深度変化の大きい画素を識別するために二元運動マスクを用い,フレーム間の深度マップから点雲を融合して初期化する。
フレキシブル変形モデルを用いて動的シーンを表現し、教師なし深度スムースネス制約とともに正規化深度正規化損失を導入し、より正確な幾何再構成を実現する。
論文 参考訳(メタデータ) (2024-10-11T22:46:46Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
内視鏡的ビデオにおける変形性組織の動的再構成は、ロボット支援手術の鍵となる技術である。
NeRFは、シーン内のオブジェクトの複雑な詳細をキャプチャするのに苦労します。
我々のネットワークは、レンダリング品質、レンダリング速度、GPU使用率など、多くの面で既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-06T09:31:30Z) - Deform3DGS: Flexible Deformation for Fast Surgical Scene Reconstruction with Gaussian Splatting [20.147880388740287]
この研究は、内視鏡手術中に変形可能な組織に対して、Deform3DGSと呼ばれる新しい高速再構築フレームワークを提示する。
リアルタイム3Dレンダリングの新技術である3D Gaussian Splattingを,ポイントクラウドを統合して手術シーンに導入する。
また,個々のガウスレベルにおける組織変形動態を学習するためのフレキシブルな変形モデリング手法 (FDM) を提案する。
論文 参考訳(メタデータ) (2024-05-28T05:14:57Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAMは鏡視下手術の効率的なアプローチであり、合理化表現と微分ガウス化を統合している。
実験の結果,EndoGSLAMは従来型あるいは神経型SLAMアプローチよりも術中可用性と再建品質のトレードオフが良好であることがわかった。
論文 参考訳(メタデータ) (2024-03-22T11:27:43Z) - EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene
Reconstruction [36.35631592019182]
3次元ガウススプラッティングを用いたリアルタイム内視鏡的シーン再構築フレームワークであるEndoGaussian(3DGS)を紹介する。
我々のフレームワークはレンダリング速度をリアルタイムレベルまで大幅に向上させます。
公開データセットの実験は、多くの点で以前のSOTAに対する有効性を実証している。
論文 参考訳(メタデータ) (2024-01-23T08:44:26Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlaneは単一視点環境下での手術シーンの高速かつ正確な再構築手法である。
LerPlaneは外科手術を4Dボリュームとして扱い、静的および動的フィールドの明示的な2D平面に分解する。
LerPlaneは静的フィールドを共有し、動的組織モデリングのワークロードを大幅に削減する。
論文 参考訳(メタデータ) (2023-05-31T14:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。