論文の概要: Flexible Gravitational-Wave Parameter Estimation with Transformers
- arxiv url: http://arxiv.org/abs/2512.02968v1
- Date: Tue, 02 Dec 2025 17:49:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.98786
- Title: Flexible Gravitational-Wave Parameter Estimation with Transformers
- Title(参考訳): 変圧器を用いたフレキシブル重力波パラメータ推定
- Authors: Annalena Kofler, Maximilian Dax, Stephen R. Green, Jonas Wildberger, Nihar Gupte, Jakob H. Macke, Jonathan Gair, Alessandra Buonanno, Bernhard Schölkopf,
- Abstract要約: 本稿では,予測時間における多様な解析設定への適応を可能にする,フレキシブルトランスフォーマーベースのアーキテクチャをトレーニング戦略と組み合わせて導入する。
我々は、Dingo-T1と呼ばれる単一のフレキシブルモデルが、第3のLIGO-Virgo-KAGRA観測ランから48の重力波イベントを解析できることを実証した。
- 参考スコア(独自算出の注目度): 73.44614054040267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gravitational-wave data analysis relies on accurate and efficient methods to extract physical information from noisy detector signals, yet the increasing rate and complexity of observations represent a growing challenge. Deep learning provides a powerful alternative to traditional inference, but existing neural models typically lack the flexibility to handle variations in data analysis settings. Such variations accommodate imperfect observations or are required for specialized tests, and could include changes in detector configurations, overall frequency ranges, or localized cuts. We introduce a flexible transformer-based architecture paired with a training strategy that enables adaptation to diverse analysis settings at inference time. Applied to parameter estimation, we demonstrate that a single flexible model -- called Dingo-T1 -- can (i) analyze 48 gravitational-wave events from the third LIGO-Virgo-KAGRA Observing Run under a wide range of analysis configurations, (ii) enable systematic studies of how detector and frequency configurations impact inferred posteriors, and (iii) perform inspiral-merger-ringdown consistency tests probing general relativity. Dingo-T1 also improves median sample efficiency on real events from a baseline of 1.4% to 4.2%. Our approach thus demonstrates flexible and scalable inference with a principled framework for handling missing or incomplete data -- key capabilities for current and next-generation observatories.
- Abstract(参考訳): 重力波データ解析はノイズ検出信号から物理情報を抽出する正確で効率的な手法に依存しているが、観測の速度と複雑さは増加傾向にある。
ディープラーニングは従来の推論に代わる強力な代替手段を提供するが、既存のニューラルネットワークは通常、データ分析設定のバリエーションを扱う柔軟性に欠ける。
このようなバリエーションは、不完全な観測や特別な試験に必要なもので、検出器の構成、全体的な周波数範囲、あるいは局所的なカットの変更を含む可能性がある。
本稿では,予測時間における多様な解析設定への適応を可能にする,フレキシブルトランスフォーマーベースのアーキテクチャをトレーニング戦略と組み合わせて導入する。
パラメータ推定に応用して、Dingo-T1と呼ばれる単一のフレキシブルモデルが可能であることを示す。
(i)広範囲な解析構成の下で,第3次LIGO-Virgo-KAGRA観測ランから48の重力波事象を解析する。
二 検知器及び周波数配置が推定後部に与える影響の系統的研究を可能にすること。
三 一般相対性理論に基づく吸気・マーガー・リングダウン整合性試験を行う。
Dingo-T1はまた、実際の事象の中央値サンプル効率を1.4%から4.2%に改善している。
このアプローチは、現在および次世代の観測所で重要な機能である、欠落したデータや不完全なデータを扱うための原則化されたフレームワークを用いて、フレキシブルでスケーラブルな推論を実証します。
関連論文リスト
- Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation [60.04281435591454]
CRDA(Curriculum Reinforcement-Learning Data Augmentation)は、マルチドメインの偽造機能を段階的にマスターするための検出器を導く新しいフレームワークである。
私たちのアプローチの中心は、強化学習と因果推論を統合することです。
提案手法は検出器の一般化性を大幅に向上し,複数のクロスドメインデータセット間でSOTA法より優れている。
論文 参考訳(メタデータ) (2025-11-10T12:45:52Z) - Diffuse to Detect: A Generalizable Framework for Anomaly Detection with Diffusion Models Applications to UAVs and Beyond [2.4449457537548036]
UAVセンサーの読み取りなどの複雑な高次元データにおける異常検出は、運用上の安全性に不可欠である。
本稿では,拡散モデルを適用して異常検出を行うDiffuse to Detect(DTD)フレームワークを提案する。
DTDは1ステップの拡散プロセスを用いてノイズパターンを予測し、再構成エラーのない異常の迅速かつ正確な同定を可能にする。
論文 参考訳(メタデータ) (2025-10-27T02:08:08Z) - Transformer-Based Indirect Structural Health Monitoring of Rail Infrastructure with Attention-Driven Detection and Localization of Transient Defects [1.1782896991259]
我々は,段階的に複雑な課題に対してモデルロバスト性を評価するために,漸進的な合成データベンチマークを導入する。
提案するアテンション・フォーカス変換器とともに,複数の教師なしモデルを評価する。
提案モデルでは,提案手法の精度は最先端の解に匹敵するが,推論速度は向上する。
論文 参考訳(メタデータ) (2025-10-08T23:01:53Z) - Physics-Guided Dual Implicit Neural Representations for Source Separation [70.38762322922211]
我々は,2つの暗黙的ニューラル表現フレームワークを用いて,ソース分離のための自己教師型機械学習手法を開発した。
本手法は,復元に基づく損失関数の最小化により,生データから直接学習する。
本手法は,様々な領域にまたがるソース分離問題に対処する汎用的なフレームワークを提供する。
論文 参考訳(メタデータ) (2025-07-07T17:56:31Z) - PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency [8.719356558714246]
フルウェーブフォーム・インバージョン(Full-waveform Inversion、FWI)は、地震データを用いて地下媒体の物理パラメータを反転させる手法である。
異常な性質のため、FWIは局所的なミニマに閉じ込められやすい。
ニューラルネットワークとFWIを組み合わせることで、インバージョンプロセスの安定化が試みられている。
論文 参考訳(メタデータ) (2025-02-17T15:30:17Z) - DispFormer: A Pretrained Transformer Incorporating Physical Constraints for Dispersion Curve Inversion [56.64622091009756]
本研究では、レイリー波位相と群分散曲線からプロファイルインバージョンを$v_s$とするトランスフォーマーベースのニューラルネットワークであるDispFormerを紹介する。
DispFormerは各期間に分散データを個別に処理し、ネットワークの変更やデータセットのトレーニングとテストの厳格な調整を必要とせずに、さまざまな長さを処理できる。
論文 参考訳(メタデータ) (2025-01-08T09:08:24Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。