論文の概要: Multimodal Reinforcement Learning with Agentic Verifier for AI Agents
- arxiv url: http://arxiv.org/abs/2512.03438v1
- Date: Wed, 03 Dec 2025 04:42:47 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:05:55.430825
- Title: Multimodal Reinforcement Learning with Agentic Verifier for AI Agents
- Title(参考訳): AIエージェントのためのエージェント検証器を用いたマルチモーダル強化学習
- Authors: Reuben Tan, Baolin Peng, Zhengyuan Yang, Hao Cheng, Oier Mees, Theodore Zhao, Andrea Tupini, Isar Meijier, Qianhui Wu, Yuncong Yang, Lars Liden, Yu Gu, Sheng Zhang, Xiaodong Liu, Lijuan Wang, Marc Pollefeys, Yong Jae Lee, Jianfeng Gao,
- Abstract要約: Argosは、エージェントタスクの推論モデルをトレーニングするための、原則化されたマルチモーダル報酬エージェントである。
エージェント検証をSFTデータとRLトレーニングの両方で活用することにより、我々のモデルは最先端の結果を得ることができる。
- 参考スコア(独自算出の注目度): 131.46008226323423
- License:
- Abstract: Agentic reasoning models trained with multimodal reinforcement learning (MMRL) have become increasingly capable, yet they are almost universally optimized using sparse, outcome-based rewards computed based on the final answers. Richer rewards computed from the reasoning tokens can improve learning significantly by providing more fine-grained guidance. However, it is challenging to compute more informative rewards in MMRL beyond those based on outcomes since different samples may require different scoring functions and teacher models may provide noisy reward signals too. In this paper, we introduce the Argos (Agentic Reward for Grounded & Objective Scoring), a principled reward agent to train multimodal reasoning models for agentic tasks. For each sample, Argos selects from a pool of teacher-model derived and rule-based scoring functions to simultaneously evaluate: (i) final response accuracy, (ii) spatiotemporal localization of referred entities and actions, and (iii) the quality of the reasoning process. We find that by leveraging our agentic verifier across both SFT data curation and RL training, our model achieves state-of-the-art results across multiple agentic tasks such as spatial reasoning, visual hallucination as well as robotics and embodied AI benchmarks. Critically, we demonstrate that just relying on SFT post-training on highly curated reasoning data is insufficient, as agents invariably collapse to ungrounded solutions during RL without our online verification. We also show that our agentic verifier can help to reduce reward-hacking in MMRL. Finally, we also provide a theoretical justification for the effectiveness of Argos through the concept of pareto-optimality.
- Abstract(参考訳): マルチモーダル強化学習(MMRL)で訓練されたエージェント推論モデルは、ますます有能になっているが、最終的な回答に基づいて計算されたスパースな結果に基づく報酬を用いて、ほぼ普遍的に最適化されている。
推論トークンから計算されたよりリッチな報酬は、よりきめ細かいガイダンスを提供することで、学習を大幅に改善することができる。
しかし、異なるサンプルが異なるスコアリング機能を必要とし、教師モデルもノイズの多い報酬信号を提供するため、結果に基づいてMMRLのより情報的な報酬を計算することは困難である。
本稿では,エージェントタスクに対するマルチモーダル推論モデルをトレーニングするための基本的報酬エージェントであるArgos(Agentic Reward for Grounded & Objective Scoring)を紹介する。
各サンプルについて、Argosは教師モデルとルールベースのスコアリング関数のプールから選択し、同時に評価する。
(i)最終応答精度
二 参照実体及び行動の時空間的局所化及び
三 推論の工程の質
SFTデータキュレーションとRLトレーニングの両方でエージェント検証を活用すれば、空間推論、視覚幻覚、ロボット工学、AIベンチマークといった複数のエージェントタスクにまたがる最先端の成果が得られます。
批判的なことに、エージェントがオンライン検証なしでRL中の未解決ソリューションに必ず崩壊するため、高度にキュレートされた推論データにSFTのポストトレーニングに頼るだけでは不十分である。
また,MMRLの報酬ハックを低減するために,エージェント検証が有効であることを示す。
最後に、パーレト最適性の概念を通じて、Argosの有効性の理論的正当性も提供する。
関連論文リスト
- AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress [71.02263260394261]
大規模言語モデル(LLM)は、マルチターン意思決定タスクにおいて依然として課題に直面している。
プロセス報酬モデル(PRM)を構築し、各意思決定を評価し、エージェントの意思決定プロセスを導く。
AgentPRMは、シーケンシャルな決定と最終的な目標への貢献の間の相互依存の両方をキャプチャする。
論文 参考訳(メタデータ) (2025-11-11T14:57:54Z) - Demystifying Reinforcement Learning in Agentic Reasoning [90.3737088727791]
エージェント推論における強化学習のデミスティフィケーションのための包括的かつ体系的な調査を行う。
i) 縫合された合成軌道を、実際のエンドツーエンドのツール・ツー・ユース・トラジェクトリに置き換えることで、より強力なSFTが得られる。
探索フレンドリーな技術は、高いクリップ、過剰な報酬形成、適切なポリシーエントロピーの維持といったエージェントRLにとって不可欠であり、訓練効率を向上させることができる。
論文 参考訳(メタデータ) (2025-10-13T17:57:15Z) - Rethinking Reasoning Quality in Large Language Models through Enhanced Chain-of-Thought via RL [19.659532349434418]
強化学習(Reinforcement Learning, RL)は、近年、大規模言語モデルの推論能力を強化する主要なパラダイムとなっている。
しかし、数学やプログラミングのベンチマークで一般的に使われるルールベースの報酬関数は、応答形式と正しさのみを評価する。
本稿では,報酬と有利な信号の両方を再生するプラグイン・アンド・プレイのRL報酬フレームワークであるDynamic Reasoning Efficiency Reward (DRER)を提案する。
論文 参考訳(メタデータ) (2025-09-07T11:52:18Z) - Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner [31.033131727230277]
大規模推論モデル(LRM)は、Reinforcement Learning (RL) で最適化された複雑な数学問題の解法において、最近約束されている。
本稿では,RLに基づく学習における大きなボトルネックに対処するため,思考レベルで機能する固有信号駆動型生成過程評価機構を提案する。
1.5B と 7B のパラメータ LRM を用いた実験により,結果のみの報酬ベースラインよりもトレーニングサンプルが有意に少ない問題解精度が得られた。
論文 参考訳(メタデータ) (2025-07-31T07:54:58Z) - GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training [62.536191233049614]
検証結果報酬(RLVR)を用いた強化学習は、大規模言語モデル(LLM)におけるチェーン・オブ・ソート(CoT)推論を効果的にスケールアップした。
本研究は、24点やALFWorldの具体化タスクなど、複雑なカードゲームに関する広範な実験を通じてこの問題を調査する。
報酬が行動結果にのみ基づく場合、RLはVLMにおけるCoT推論の動機付けに失敗し、代わりに思考崩壊と呼ばれる現象が生じる。
論文 参考訳(メタデータ) (2025-03-11T15:17:02Z) - Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems [54.4392552373835]
リワードモデル(RM)は、大規模言語モデル(LLM)のトレーニングと推論時間のスケールアップに不可欠である
本稿では,報酬モデルと検証可能な正当性信号を組み合わせた報酬システムであるエージェント報酬モデルを提案する。
我々は,既存の報奨モデルベンチマークと実世界の下流タスクのベスト・オブ・n検索に関する総合的な実験を行う。
論文 参考訳(メタデータ) (2025-02-26T17:19:12Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
強化学習(Reinforcement Learning, RL)は、報酬領域におけるサンプルの非効率性に悩まされ、移行時にはさらにその問題が顕著になる。
サンプル効率を改善するために、報酬形成はRLエージェントが最適なポリシーに迅速に収束するのに役立つ本質的な報酬を導入するためのよく研究されたアプローチである。
論文 参考訳(メタデータ) (2024-05-24T03:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。