論文の概要: Bayesian Event-Based Model for Disease Subtype and Stage Inference
- arxiv url: http://arxiv.org/abs/2512.03467v1
- Date: Wed, 03 Dec 2025 05:45:16 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:04:25.876991
- Title: Bayesian Event-Based Model for Disease Subtype and Stage Inference
- Title(参考訳): Bayesian Event-based Model for Disease Subtype and Stage Inference
- Authors: Hongtao Hao, Joseph L. Austerweil,
- Abstract要約: サブタイプおよびステージ推論イベントベースモデル(SuStaIn)は、多くの疾患のサブタイプを明らかにするために広く応用されている。
本研究では,イベントベースモデル(BEBMS)のベイズ的サブタイプを考案し,その性能をSuStaInと比較する。
StaInよりBEBMSはアルツハイマー病の進行に関する科学的コンセンサスと一致している。
- 参考スコア(独自算出の注目度): 1.2318267573115809
- License:
- Abstract: Chronic diseases often progress differently across patients. Rather than randomly varying, there are typically a small number of subtypes for how a disease progresses across patients. To capture this structured heterogeneity, the Subtype and Stage Inference Event-Based Model (SuStaIn) estimates the number of subtypes, the order of disease progression for each subtype, and assigns each patient to a subtype from primarily cross-sectional data. It has been widely applied to uncover the subtypes of many diseases and inform our understanding of them. But how robust is its performance? In this paper, we develop a principled Bayesian subtype variant of the event-based model (BEBMS) and compare its performance to SuStaIn in a variety of synthetic data experiments with varied levels of model misspecification. BEBMS substantially outperforms SuStaIn across ordering, staging, and subtype assignment tasks. Further, we apply BEBMS and SuStaIn to a real-world Alzheimer's data set. We find BEBMS has results that are more consistent with the scientific consensus of Alzheimer's disease progression than SuStaIn.
- Abstract(参考訳): 慢性疾患はしばしば患者によって異なる形で進行する。
ランダムに変化するのではなく、患者間で病気がどのように進行するかについて、少数のサブタイプが存在するのが一般的である。
この構造的不均一性を捉えるため、Subtype and Stage Inference Event-Based Model (SuStaIn)はサブタイプの数を推定し、各サブタイプの疾患進行の順序を推定し、主に断面データから各患者にサブタイプを割り当てる。
多くの病気のサブタイプを解明し、その理解を深めるために広く応用されてきた。
しかし、そのパフォーマンスはどのくらい堅牢か?
本稿では,イベントベースモデル(BEBMS)のベイズ的サブタイプを基本として開発し,その性能を様々なモデル不特定レベルの合成データ実験でSuStaInと比較する。
BEBMSは、オーダリング、ステージング、サブタイプ割り当てタスクでSuStaInを大幅に上回っている。
さらに,BEBMSとSuStaInを現実のアルツハイマー病データセットに適用する。
StaInよりBEBMSはアルツハイマー病の進行に関する科学的コンセンサスと一致している。
関連論文リスト
- Clustering Alzheimer's Disease Subtypes via Similarity Learning and Graph Diffusion [14.536841566365048]
アルツハイマー病(英語: Alzheimer's disease、AD)は、世界中の何百万人もの人に影響を及ぼす複雑な神経変性疾患である。
本研究の目的は,臨床像や病態を特徴とするADのサブタイプを同定することである。
論文 参考訳(メタデータ) (2024-10-04T21:38:14Z) - Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT [15.942849233189664]
アルツハイマー病は最も多い神経変性疾患である。
現在のデータ駆動型アプローチでは、ADまたは関連する障害の後期段階でサブタイプを分類することができるが、無症状またはプロドロマル段階の予測では困難である。
本稿では,AD患者を早期にサブタイプに分類するために,画像,遺伝学,臨床評価などの早期指標を用いたマルチモーダルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T19:30:04Z) - Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease
Classification with Incomplete Data [8.536869574065195]
Multi-Modal Mixing Transformer (3MAT)は、マルチモーダルデータを利用するだけでなく、欠落したデータシナリオも扱う病気分類変換器である。
本稿では、欠落したデータシナリオを扱うために、前例のないモダリティ独立性とロバスト性を確保するための新しいモダリティドロップアウト機構を提案する。
論文 参考訳(メタデータ) (2022-10-01T11:31:02Z) - Robust Hierarchical Patterns for identifying MDD patients: A Multisite
Study [3.4561220135252264]
大うつ病(MDD)のバイオマーカーとしての階層的スパース接続パターン(h SCP)について検討する。
我々は、静止状態fMRIデータから抽出した機能的接続行列からMDD患者を予測するためのh SCPに基づく新しいモデルを提案する。
本研究の結果は,多様性が予測性能に与える影響を示し,多様性を低減し,コンポーネントの予測・一般化能力を向上させることができる。
論文 参考訳(メタデータ) (2022-02-22T19:40:32Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
近似計算を用いて生物学的に有意なパラメータを推定するための血小板沈着モデルと推論手法を提案する。
この研究は、CVDの検出と治療のためのパーソナライズされた病理検査の先例のない機会を開く。
論文 参考訳(メタデータ) (2020-10-13T15:20:21Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。