論文の概要: MemVerse: Multimodal Memory for Lifelong Learning Agents
- arxiv url: http://arxiv.org/abs/2512.03627v1
- Date: Wed, 03 Dec 2025 10:06:14 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:01:50.803495
- Title: MemVerse: Multimodal Memory for Lifelong Learning Agents
- Title(参考訳): MemVerse: 生涯学習エージェントのためのマルチモーダルメモリ
- Authors: Junming Liu, Yifei Sun, Weihua Cheng, Haodong Lei, Yirong Chen, Licheng Wen, Xuemeng Yang, Daocheng Fu, Pinlong Cai, Nianchen Deng, Yi Yu, Shuyue Hu, Botian Shi, Ding Wang,
- Abstract要約: 我々は,モデルに依存しないプラグアンドプレイメモリフレームワークであるMemVerseを紹介した。
MemVerseは階層的検索ベースのメモリで高速パラメトリックリコールを行う。
スケーラブルで適応的なマルチモーダルインテリジェンスを実現する。
- 参考スコア(独自算出の注目度): 35.218549149012844
- License:
- Abstract: Despite rapid progress in large-scale language and vision models, AI agents still suffer from a fundamental limitation: they cannot remember. Without reliable memory, agents catastrophically forget past experiences, struggle with long-horizon reasoning, and fail to operate coherently in multimodal or interactive environments. We introduce MemVerse, a model-agnostic, plug-and-play memory framework that bridges fast parametric recall with hierarchical retrieval-based memory, enabling scalable and adaptive multimodal intelligence. MemVerse maintains short-term memory for recent context while transforming raw multimodal experiences into structured long-term memories organized as hierarchical knowledge graphs. This design supports continual consolidation, adaptive forgetting, and bounded memory growth. To handle real-time demands, MemVerse introduces a periodic distillation mechanism that compresses essential knowledge from long-term memory into the parametric model, allowing fast, differentiable recall while preserving interpretability. Extensive experiments demonstrate that MemVerse significantly improves multimodal reasoning and continual learning efficiency, empowering agents to remember, adapt, and reason coherently across extended interactions.
- Abstract(参考訳): 大規模な言語とビジョンモデルが急速に進歩したにもかかわらず、AIエージェントは依然として基本的な制限に悩まされている。
信頼できる記憶がなければ、エージェントは過去の経験を破滅的に忘れ、長期の推論に苦労し、マルチモーダルまたはインタラクティブな環境でコヒーレントに動作しない。
我々は,高速パラメトリックリコールを階層的検索ベースメモリにブリッジし,スケーラブルで適応的なマルチモーダルインテリジェンスを実現する,モデルに依存しないプラグアンドプレイメモリフレームワークであるMemVerseを紹介した。
MemVerseは、最近の文脈における短期記憶を維持しながら、生のマルチモーダル体験を階層的な知識グラフとして構成された構造化された長期記憶に変換する。
この設計は、連続的な統合、適応的忘れ込み、および境界メモリ成長をサポートする。
リアルタイム要求を処理するため、MemVerseは、長期記憶からパラメトリックモデルに重要な知識を圧縮し、解釈可能性を維持しながら高速で微分可能なリコールを可能にする定期蒸留機構を導入した。
大規模な実験により、MemVerseはマルチモーダル推論と継続学習効率を大幅に改善し、エージェントが拡張された相互作用を記憶し、適応し、理性的に判断することを可能にする。
関連論文リスト
- Agentic Learner with Grow-and-Refine Multimodal Semantic Memory [50.81667005063605]
ViLoMemは、コンパクトなスキーマベースのメモリを構築するデュアルストリームメモリフレームワークである。
視覚的障害パターンと論理的推論エラーを符号化し、MLLMが成功し失敗した経験から学ぶことを可能にする。
論文 参考訳(メタデータ) (2025-11-26T18:55:08Z) - Evaluating Long-Term Memory for Long-Context Question Answering [100.1267054069757]
質問応答タスクにアノテートした合成長文対話のベンチマークであるLoCoMoを用いて,メモリ拡張手法の体系的評価を行う。
以上の結果から,メモリ拡張アプローチによりトークン使用率が90%以上削減され,競争精度が向上した。
論文 参考訳(メタデータ) (2025-10-27T18:03:50Z) - ReasoningBank: Scaling Agent Self-Evolving with Reasoning Memory [57.517214479414726]
ReasoningBankは、エージェントの自己判断の成功と失敗の経験から一般化可能な推論戦略を抽出するメモリフレームワークである。
テスト時には、エージェントがReasoningBankから関連する記憶を取得してそのインタラクションを知らせ、新しい学習を統合することで、時間が経つにつれてより有能になる。
本稿では,エージェントのインタラクションエクスペリエンスをスケールアップすることにより,学習プロセスの高速化と多様化を図るメモリ対応テストタイムスケーリング(MaTTS)を提案する。
論文 参考訳(メタデータ) (2025-09-29T17:51:03Z) - MemGen: Weaving Generative Latent Memory for Self-Evolving Agents [57.1835920227202]
本稿では,エージェントに人間的な認知機能を持たせる動的生成記憶フレームワークであるMemGenを提案する。
MemGenは、エージェントが推論を通して潜在記憶をリコールし、増大させ、記憶と認知の密接なサイクルを生み出すことを可能にする。
論文 参考訳(メタデータ) (2025-09-29T12:33:13Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Ever-Evolving Memory by Blending and Refining the Past [30.63352929849842]
CREEMは長期会話のための新しい記憶システムである。
過去と現在の情報をシームレスに接続すると同時に、障害情報を忘れる能力も備えている。
論文 参考訳(メタデータ) (2024-03-03T08:12:59Z) - RecallM: An Adaptable Memory Mechanism with Temporal Understanding for
Large Language Models [3.9770715318303353]
RecallMは、適応可能で拡張可能な長期記憶機構を備えた大規模言語モデルを提供するための新しいアーキテクチャである。
RecallM は,長期記憶に格納された知識を更新するためのベクトルデータベースよりも 4 倍有効であることを示す。
また、RecallMは、一般的な質問応答およびコンテキスト内学習タスクにおいて、競合性能を示すことを示した。
論文 参考訳(メタデータ) (2023-07-06T02:51:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。