論文の概要: AITutor-EvalKit: Exploring the Capabilities of AI Tutors
- arxiv url: http://arxiv.org/abs/2512.03688v1
- Date: Wed, 03 Dec 2025 11:27:50 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:03:41.964386
- Title: AITutor-EvalKit: Exploring the Capabilities of AI Tutors
- Title(参考訳): AITutor-EvalKit - AIチュートリアルの能力を探る
- Authors: Numaan Naeem, Kaushal Kumar Maurya, Kseniia Petukhova, Ekaterina Kochmar,
- Abstract要約: 本稿では,AI教師の教育的品質を評価するために,言語技術を用いたAITutor-EvalKitを提案する。
デモと評価のためのソフトウェアと、モデル検査とデータ視覚化を提供する。
- 参考スコア(独自算出の注目度): 15.444428064780363
- License:
- Abstract: We present AITutor-EvalKit, an application that uses language technology to evaluate the pedagogical quality of AI tutors, provides software for demonstration and evaluation, as well as model inspection and data visualization. This tool is aimed at education stakeholders as well as *ACL community at large, as it supports learning and can also be used to collect user feedback and annotations.
- Abstract(参考訳): 本稿では,AI教師の教育的品質を評価するために言語技術を使用するアプリケーションであるAITutor-EvalKitについて紹介する。
このツールは、学習をサポートし、ユーザからのフィードバックやアノテーションの収集にも使用できるので、教育関係者だけでなく、大規模なACLコミュニティも対象としています。
関連論文リスト
- MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors [82.91830877219822]
我々は、総合的なチューリングモデル評価のためのオープンソースのベンチマークであるMathTutorBenchを紹介する。
MathTutorBenchには、ダイアログベースの教育における科学の研究によって定義された、家庭教師の能力をカバーするデータセットとメトリクスが含まれている。
閉鎖的およびオープンウェイトなモデルの幅広いセットを評価し、問題解決能力によって示される課題の専門知識が、すぐには良い教育に変換されないことを発見した。
論文 参考訳(メタデータ) (2025-02-26T08:43:47Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Large Language Models Meet User Interfaces: The Case of Provisioning Feedback [6.626949691937476]
我々は、GenAIを教育ツールに組み込むためのフレームワークを提案し、我々のツールであるFeedback Copilotにその応用を実証する。
この研究は、教育におけるGenAIの将来についてのコースをグラフ化している。
論文 参考訳(メタデータ) (2024-04-17T05:05:05Z) - Improving the Validity of Automatically Generated Feedback via Reinforcement Learning [46.667783153759636]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - A Toolbox for Modelling Engagement with Educational Videos [21.639063299289607]
この作業では、データセットとオンライン学習者の状態モデルを含むPEEKCデータセットとTrueLearn Pythonライブラリを提示する。
このデータセットには、AI関連の教育ビデオが多数含まれており、AI固有の教育レコメンデーションの構築と検証に関心がある。
論文 参考訳(メタデータ) (2023-12-30T21:10:55Z) - Democratize with Care: The need for fairness specific features in
user-interface based open source AutoML tools [0.0]
Automated Machine Learning (AutoML)は、機械学習モデル開発プロセスを効率化する。
この民主化により、多くのユーザー(非専門家を含む)が最先端の機械学習の専門知識にアクセスし利用できるようになる。
しかし、AutoMLツールはまた、これらのツールがデータを処理する方法、モデル選択、そして採用される最適化アプローチのバイアスを伝播する可能性がある。
論文 参考訳(メタデータ) (2023-12-16T19:54:00Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
本稿では,学習者モデルを直接評価ルーリックから導出する手法を提案する。
本稿では,コンピュータ思考のスキルをテストするために開発された活動の人的評価を自動化するために,この手法を適用する方法について述べる。
論文 参考訳(メタデータ) (2022-09-07T10:09:12Z) - AI Explainability 360: Impact and Design [120.95633114160688]
2019年、私たちはAI Explainability 360(Arya et al. 2020)を開発しました。
本稿では,いくつかのケーススタディ,統計,コミュニティフィードバックを用いて,ツールキットが与える影響について検討する。
また,ツールキットのフレキシブルな設計,使用例,利用者が利用可能な教育資料や資料についても述べる。
論文 参考訳(メタデータ) (2021-09-24T19:17:09Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
本稿では,教育者の意思決定プロセスを支援するために,EDM技術を用いたリアルタイムAIを活用した新しい教室ツールを提案する。
ReACTは、ユーザフレンドリなグラフィカルインターフェースを備えたデータ駆動ツールである。
学生のパフォーマンスデータを分析し、コンテキストベースのアラートとコースプランニングのための教育者へのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-30T03:09:59Z) - Automated Personalized Feedback Improves Learning Gains in an
Intelligent Tutoring System [34.19909376464836]
大規模知的学習システム(ITS)における自動的、データ駆動型、パーソナライズされたフィードバックが、学生の学習結果をいかに改善するかを検討する。
本稿では,個別の学生のニーズを考慮に入れたパーソナライズされたフィードバックを生成する機械学習手法を提案する。
我々は、最先端の機械学習と自然言語処理技術を利用して、学生にパーソナライズされたヒント、ウィキペディアに基づく説明、数学的ヒントを提供する。
論文 参考訳(メタデータ) (2020-05-05T18:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。