論文の概要: Bounded Graph Clustering with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2512.05623v1
- Date: Fri, 05 Dec 2025 11:06:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-13 22:40:57.001799
- Title: Bounded Graph Clustering with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークによる境界グラフクラスタリング
- Authors: Kibidi Neocosmos, Diego Baptista, Nicole Ludwig,
- Abstract要約: グラフニューラルネットワーク(GNN)によって発見されたコミュニティの数を柔軟かつ原則的に制御する手法を導入する。
クラスタの本当の数を仮定するよりも、ユーザが可算範囲を指定できるフレームワークを提案する。
ユーザが正確な数のクラスタが必要な場合、それを指定して、確実に返却することも可能だ。
- 参考スコア(独自算出の注目度): 0.07646713951724012
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In community detection, many methods require the user to specify the number of clusters in advance since an exhaustive search over all possible values is computationally infeasible. While some classical algorithms can infer this number directly from the data, this is typically not the case for graph neural networks (GNNs): even when a desired number of clusters is specified, standard GNN-based methods often fail to return the exact number due to the way they are designed. In this work, we address this limitation by introducing a flexible and principled way to control the number of communities discovered by GNNs. Rather than assuming the true number of clusters is known, we propose a framework that allows the user to specify a plausible range and enforce these bounds during training. However, if the user wants an exact number of clusters, it may also be specified and reliably returned.
- Abstract(参考訳): コミュニティ検出では、全ての可能な値に対する徹底的な探索が計算不可能であるため、事前にクラスタ数を指定する必要がある。
古典的なアルゴリズムでは、この数をデータから直接推測できるが、グラフニューラルネットワーク(GNN)ではそうではない。
本研究では,GNNが発見するコミュニティの数を柔軟かつ原則的に制御する手法を導入することで,この制限に対処する。
クラスタの本当の数を仮定する代わりに、ユーザに対して、可算範囲を指定して、トレーニング中にこれらの境界を強制することのできるフレームワークを提案する。
しかし、ユーザが正確な数のクラスタを欲しければ、それを指定し、確実に返却することもできる。
関連論文リスト
- Dying Clusters Is All You Need -- Deep Clustering With an Unknown Number of Clusters [5.507296054825372]
高次元データで有意義なグループを見つけることは、データマイニングにおいて重要な課題である。
深層クラスタリング手法はこれらの課題において顕著な成果を上げている。
これらのメソッドの多くは、事前にクラスタの数を指定する必要がある。
これは、ラベル付きデータが利用できない場合、クラスタの数は通常不明であるため、大きな制限となる。
これらのアプローチのほとんどは、クラスタリングプロセスから分離されたクラスタの数を見積もっています。
論文 参考訳(メタデータ) (2024-10-12T11:04:10Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Genie: A new, fast, and outlier-resistant hierarchical clustering
algorithm [3.7491936479803054]
我々はGenieと呼ばれる新しい階層的クラスタリングリンク基準を提案する。
我々のアルゴリズムは、2つのクラスタを、選択された経済不平等尺度が与えられたしきい値を超えないようにリンクする。
このアルゴリズムのリファレンス実装は、Rのためのオープンソースの'genie'パッケージに含まれている。
論文 参考訳(メタデータ) (2022-09-13T06:42:53Z) - Grouping-matrix based Graph Pooling with Adaptive Number of Clusters [41.672737383815374]
入力データに基づいて適切なクラスタ数を自動決定するグラフプーリングアーキテクチャを提案する。
分子特性予測タスクの大規模評価は,本手法が従来の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-09-07T05:25:22Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - Selective Pseudo-label Clustering [42.19193184852487]
ディープニューラルネットワーク(DNN)は、高次元データをクラスタリングする困難なタスクに対処する手段を提供する。
DNNのトレーニングに最も自信のある擬似ラベルのみを用いる選択的擬似ラベルクラスタリングを提案する。
新しいアプローチは、3つの人気のある画像データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-22T13:56:53Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。