論文の概要: Exoplanet formation inference using conditional invertible neural networks
- arxiv url: http://arxiv.org/abs/2512.05751v1
- Date: Fri, 05 Dec 2025 14:38:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-13 22:40:57.060056
- Title: Exoplanet formation inference using conditional invertible neural networks
- Title(参考訳): 条件付き可逆ニューラルネットワークを用いた外惑星形成推定
- Authors: Remo Burn, Victor F. Ksoll, Hubert Klahr, Thomas Henning,
- Abstract要約: 我々は、地球規模の惑星形成モデルから合成されたデータに基づいて条件付き可逆ニューラルネットワーク(cINN)を訓練する。
それぞれの惑星が個々の点として扱われる多惑星データのトレーニングは有望である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interpretation of the origin of observed exoplanets is usually done only qualitatively due to uncertainties of key parameters in planet formation models. To allow a quantitative methodology which traces back in time to the planet birth locations, we train recently developed conditional invertible neural networks (cINN) on synthetic data from a global planet formation model which tracks growth from dust grains to evolved final giant planets. In addition to deterministic single planet formation runs, we also include gravitationally interacting planets in multiplanetary systems, which include some measure of chaos. For the latter case, we treat them as individual planets or choose the two or three planets most likely to be discovered by telescopes. We find that training on multiplanetary data, each planet treated as individual point, is promising. The single-planet data only covers a small range of planets and does not extrapolate well to planet properties not included in the training data. Extension to planetary systems will require more training data due to the higher dimensionality of the problem.
- Abstract(参考訳): 観測された太陽系外惑星の起源の解釈は通常、惑星形成モデルにおける重要なパラメータの不確かさのため、質的にのみ行われる。
近年開発されたCINN(コンディショナル・インバーチブル・ニューラル・ネットワーク)は,地球規模の惑星形成モデルを用いて,塵粒から最終惑星への成長を追跡する。
決定論的単一惑星形成の実行に加えて、多惑星系における重力的に相互作用する惑星も含む。
後者の場合、個々の惑星として扱うか、望遠鏡で発見される可能性が最も高い2つまたは3つの惑星を選択する。
それぞれの惑星が個々の点として扱われる多惑星データのトレーニングは有望である。
単一惑星のデータは、少数の惑星のみをカバーしており、訓練データに含まれていない惑星の性質に十分対応していない。
惑星系への拡張は、問題の高次元性のためにより多くのトレーニングデータを必要とする。
関連論文リスト
- A Self-Evolving AI Agent System for Climate Science [59.08800209508371]
我々は,地球科学者のためのインタラクティブな"コパイロット"として設計された,初の自己進化型AIエージェントシステムであるEarthLinkを紹介する。
自然言語のインタラクションを通じて、EarthLinkは、計画、コード実行、データ分析、物理的推論を統合することで、研究ワークフロー全体を自動化します。
人のような学際的な分析能力と習熟度を示し、中核的な大規模気候タスクのエキスパート評価においてジュニア研究者に匹敵する能力を示す。
論文 参考訳(メタデータ) (2025-07-23T08:29:25Z) - Towards LLM Agents for Earth Observation [63.163707376462405]
これは、NASAの地球観測所の記事から13のトピックと17の衛星センサーに関する140のイエス/ノーの質問のベンチマークである。
Google Earth Engine APIをツールとして使用すると、LLMエージェントは58%以上のコードを実行できないため、33%の精度しか達成できない。
我々は、合成データを微調整することで、オープンモデルの失敗率を改善し、より小さなモデルの方が、はるかに大きなモデルに匹敵する精度が得られるようにした。
論文 参考訳(メタデータ) (2025-04-16T14:19:25Z) - Exoplanets Prediction in Multi-Planetary Systems and Determining the
Correlation Between the Parameters of Planets and Host Stars Using Artificial
Intelligence [0.0]
我々は、少なくとも3つ以上の確認済みの惑星を収容する229個の多惑星系で、さらに太陽系外惑星を探索する。
我々は効率的な機械学習手法を用いて、762個の太陽系外惑星と8個の太陽系外惑星からなるデータセットを解析した。
巨大惑星では、惑星半径と主星の質量の間に強い相関関係が見られ、惑星形成と恒星の性質の関係に関する興味深い洞察を与えるかもしれない。
論文 参考訳(メタデータ) (2024-02-27T21:28:08Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
我々は、原始惑星系円盤から埋め込まれたとされる惑星の質量を素早く推定するDBNetsを開発した。
アウト・オブ・ディストリビューション・データでツールを広範囲にテストしました。
DBNetはトレーニング範囲外において、特定のしきい値以上の不確実性を返す入力を強く識別することができる。
光学的に薄い状態において、約60deg以下の傾斜で観測された円盤にのみ確実に適用することができる。
論文 参考訳(メタデータ) (2024-02-19T19:00:09Z) - Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
コンピュータビジョンや機械学習には、現実の問題が増えている。
衛星データから地球観測を行う場合、一つの観測層を予測できることが重要である。
論文 参考訳(メタデータ) (2024-02-12T20:08:58Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
我々は効率的な機械学習手法を用いて、762個の太陽系外惑星と8個の太陽系外惑星からなるデータセットを解析した。
異なる教師なしクラスタリングアルゴリズムを適用することで、データを「小さい」惑星と「巨大な」惑星の2つの分類に分類する。
我々の分析は、惑星の質量、軌道周期、恒星質量が太陽系外惑星半径を予測する重要な役割を担っていることを強調している。
論文 参考訳(メタデータ) (2023-01-17T19:15:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z) - On planetary systems as ordered sequences [7.216830424040808]
我々は、3277の惑星系における4286個のケプラー惑星の構成(または順序付け)にどのような情報が属するかを考える。
我々は、主星の性質に基づいて、惑星の半径と周期を予測するためにニューラルネットワークモデルを訓練する。
我々は、計算言語学において、教師なしの音声タグ付けに使用されるモデルを適用し、惑星や惑星系が、物理的に解釈可能な「文法規則」を持つ自然カテゴリーに該当するかどうかを調査する。
論文 参考訳(メタデータ) (2021-05-20T18:00:29Z) - Analyzing the Stability of Non-coplanar Circumbinary Planets using
Machine Learning [0.0]
非平面円周系における外惑星の軌道安定性を数値シミュレーション法を用いて解析する。
我々は、周囲惑星系の安定性を迅速に決定できる機械学習モデルを訓練する。
その結果、惑星の大きな傾きは軌道の安定性を高める傾向がありますが、地球と木星の間の惑星の質量範囲の変化はシステムの安定性にはほとんど影響しません。
論文 参考訳(メタデータ) (2021-01-07T00:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。